3 research outputs found
KP solitons in shallow water
The main purpose of the paper is to provide a survey of our recent studies on
soliton solutions of the Kadomtsev-Petviashvili (KP) equation. The
classification is based on the far-field patterns of the solutions which
consist of a finite number of line-solitons. Each soliton solution is then
defined by a point of the totally non-negative Grassmann variety which can be
parametrized by a unique derangement of the symmetric group of permutations.
Our study also includes certain numerical stability problems of those soliton
solutions. Numerical simulations of the initial value problems indicate that
certain class of initial waves asymptotically approach to these exact solutions
of the KP equation. We then discuss an application of our theory to the Mach
reflection problem in shallow water. This problem describes the resonant
interaction of solitary waves appearing in the reflection of an obliquely
incident wave onto a vertical wall, and it predicts an extra-ordinary four-fold
amplification of the wave at the wall. There are several numerical studies
confirming the prediction, but all indicate disagreements with the KP theory.
Contrary to those previous numerical studies, we find that the KP theory
actually provides an excellent model to describe the Mach reflection phenomena
when the higher order corrections are included to the quasi-two dimensional
approximation. We also present laboratory experiments of the Mach reflection
recently carried out by Yeh and his colleagues, and show how precisely the KP
theory predicts this wave behavior.Comment: 50 pages, 25 figure