128 research outputs found

    Scalar perturbations in braneworld cosmology

    Get PDF
    We study the behaviour of scalar perturbations in the radiation-dominated era of Randall-Sundrum braneworld cosmology by numerically solving the coupled bulk and brane master wave equations. We find that density perturbations with wavelengths less than a critical value (set by the bulk curvature length) are amplified during horizon re-entry. This means that the radiation era matter power spectrum will be at least an order of magnitude larger than the predictions of general relativity (GR) on small scales. Conversely, we explicitly confirm from simulations that the spectrum is identical to GR on large scales. Although this magnification is not relevant for the cosmic microwave background or measurements of large scale structure, it will have some bearing on the formation of primordial black holes in Randall-Sundrum models.Comment: 17 pages, 7 figure

    Local Probe Isomerization in a One-Dimensional Molecular Array

    Full text link
    Synthesis of one-dimensional molecular arrays with tailored stereoisomers is challenging yet has a great potential for application in molecular opto-, electronic- and magnetic-devices, where the local array structure plays a decisive role in the functional properties. Here, we demonstrate construction and characterization of dehydroazulene isomer and diradical units in three-dimensional organometallic compounds on Ag(111) with a combination of low-temperature scanning tunneling microscopy and density functional theory calculations. Tip-induced voltage pulses firstly result in the formation of a diradical species via successive homolytic fission of two C-Br bonds in the naphthyl groups, which are subsequently transformed into chiral dehydroazulene moieties. The delicate balance of the reaction rates among the diradical and two stereoisomers, arising from an in-line configuration of tip and molecular unit, allows directional azulene-to-azulene and azulene-to-diradical local probe isomerization in a controlled manner. Furthermore, we found that the diradical moiety hosts an open-shell singlet with antiferromagnetic coupling between the unpaired electrons, which can undergo an inelastic spin transition of 91 meV to the ferromagnetically coupled triplet state

    The Subaru Deep Field Project: Lymanα\alpha Emitters at Redshift of 6.6

    Full text link
    We present new results of a deep optical imaging survey using a narrowband filter (NB921NB921) centered at λ=\lambda = 9196 \AA ~ together with BB, VV, RR, ii^\prime, and zz^\prime broadband filters in the sky area of the Subaru Deep Field which has been promoted as one of legacy programs of the 8.2m Subaru Telescope. We obtained a photometric sample of 58 Lyα\alpha emitter candidates at zz \approx 6.5 -- 6.6 among 180\sim 180 strong NB921NB921-excess (zNB921>1.0z^\prime - NB921 > 1.0) objects together with a color criterion of iz>1.3i^\prime - z^\prime > 1.3. We then obtained optical spectra of 20 objects in our NB921NB921-excess sample and identified at least nine Lyα\alpha emitters at z6.5z \sim 6.5 -- 6.6 including the two emitters reported by Kodaira et al. (2003). Since our Lyα\alpha emitter candidates are free from strong amplification of gravitational lensing, we are able to discuss their observational properties from a statistical point of view. Based on these new results, we obtain a lower limit of the star formation rate density of ρSFR5.5×104\rho_{\rm SFR} \simeq 5.5 \times 10^{-4} h0.7h_{0.7} MM_\odot yr1^{-1} Mpc3^{-3} at z6.6z \approx 6.6, being consistent with our previous estimate. We discuss the nature of star-formation activity in galaxies beyond z=6z=6.Comment: 49 pages, 16 figures, PASJ, Vol. 57, No. 1, in pres

    ALS mutations in the TIA-1 prion-like domain trigger highly condensed pathogenic structures

    Get PDF
    筋萎縮性側索硬化症(ALS)の発症機構の一端を解明 --タンパク質の高密度な凝縮構造が鍵--. 京都大学プレスリリース. 2022-09-13.T cell intracellular antigen-1 (TIA-1) plays a central role in stress granule (SG) formation by self-assembly via the prion-like domain (PLD). In the TIA-1 PLD, amino acid mutations associated with neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) or Welander distal myopathy (WDM), have been identified. However, how these mutations affect PLD self-assembly properties has remained elusive. In this study, we uncovered the implicit pathogenic structures caused by the mutations. NMR analysis indicated that the dynamic structures of the PLD are synergistically determined by the physicochemical properties of amino acids in units of five residues. Molecular dynamics simulations and three-dimensional electron crystallography, together with biochemical assays, revealed that the WDM mutation E384K attenuated the sticky properties, whereas the ALS mutations P362L and A381T enhanced the self-assembly by inducing β-sheet interactions and highly condensed assembly, respectively. These results suggest that the P362L and A381T mutations increase the likelihood of irreversible amyloid fibrillization after phase-separated droplet formation, and this process may lead to pathogenicity

    Holographic Formulation of Quantum Supergravity

    Get PDF
    We show that N=1{\cal N}=1 supergravity with a cosmological constant can be expressed as constrained topological field theory based on the supergroup Osp(14)Osp(1|4). The theory is then extended to include timelike boundaries with finite spatial area. Consistent boundary conditions are found which induce a boundary theory based on a supersymmetric Chern-Simons theory. The boundary state space is constructed from states of the boundary supersymmetric Chern-Simons theory on the punctured two sphere and naturally satisfies the Bekenstein bound, where area is measured by the area operator of quantum supergravity.Comment: 30 pages, no figur

    Self Excitation of the Tunneling Scalar Field in False Vacuum Decay

    Get PDF
    A method to determine the quantum state of a scalar field after O(4)O(4)-symmetric bubble nucleation has been developed recently. The method has an advantage that it concisely gives us a clear picture of the resultant quantum state. In particular, one may interpret the excitations as a particle creation phenomenon just as in the case of particle creation in curved spacetime. As an application, we investigate in detail the spectrum of quantum excitations of the tunneling field when it undergoes false vacuum decay. We consider a tunneling potential which is piece-wise quadratic, hence is simple enough to allow us an analytical treatment. We find a strong dependence of the excitation spectrum upon the shape of the potential on the true vacuum side. We then discuss features of the excitation spectrum common to general tunneling potentials not restricted to our simple model.Comment: 24 pages, uuencoded compressed postscript fil

    Environmental Effects on Evolution of Cluster Galaxies in a LCDM Universe

    Full text link
    We investigate environmental effects on evolution of bright cluster galaxies in a Λ\Lambda dominated cold dark matter universe using a combination of dissipationless N-body simulations and a semi-analytic galaxy formation model. The N-body simulations enable us to calculate orbits of galaxies in simulated clusters. Therefore we can incorporate stripping of cold gas from galactic disks by ram pressure from intracluster medium into our model. In this paper we study how ram pressure stripping (RPS) and small starburst induced by a minor merger affect colors, star formation rates, and morphologies of cluster galaxies. We find that the RPS is not important for colors and SFRs of galaxies in the cluster core if star formation time-scale is properly chosen, because the star formation is sufficiently suppressed by consumption of the cold gas in the disks. Then observed color and SFR gradients can be reproduced without the RPS. The small starburst triggered by a minor merger hardly affects the SFRs and colors of the galaxies as well. We also examine whether these two processes can resolve the known problem that the major merger-driven bulge formation scenario predict too few galaxies of intermediate bulge-to-total luminosity ratio (B/T) in clusters. When the minor burst is taken into account, the intermediate B/T population is increased and the observed morphology gradients in clusters are successfully reproduced. When the minor burst is considered, the RPS also plays an important role in formation of the intermediate B/T galaxies. We present redshift evolution of morphological fractions predicted by our models. The predicted number ratios of the intermediate B/T galaxies to the bulge-dominated galaxies show nearly flat or slightly increasing trends with increasing redshift.Comment: 12 pages, 9 figures, accepted for publication in ApJ (v587 n2 April 20, 2003

    Spectral evolution of GRB 060904A observed with Swift and Suzaku -- Possibility of Inefficient Electron Acceleration

    Full text link
    We observed an X-ray afterglow of GRB 060904A with the Swift and Suzaku satellites. We found rapid spectral softening during both the prompt tail phase and the decline phase of an X-ray flare in the BAT and XRT data. The observed spectra were fit by power-law photon indices which rapidly changed from Γ=1.510.03+0.04\Gamma = 1.51^{+0.04}_{-0.03} to Γ=5.300.59+0.69\Gamma = 5.30^{+0.69}_{-0.59} within a few hundred seconds in the prompt tail. This is one of the steepest X-ray spectra ever observed, making it quite difficult to explain by simple electron acceleration and synchrotron radiation. Then, we applied an alternative spectral fitting using a broken power-law with exponential cutoff (BPEC) model. It is valid to consider the situation that the cutoff energy is equivalent to the synchrotron frequency of the maximum energy electrons in their energy distribution. Since the spectral cutoff appears in the soft X-ray band, we conclude the electron acceleration has been inefficient in the internal shocks of GRB 060904A. These cutoff spectra suddenly disappeared at the transition time from the prompt tail phase to the shallow decay one. After that, typical afterglow spectra with the photon indices of 2.0 are continuously and preciously monitored by both XRT and Suzaku/XIS up to 1 day since the burst trigger time. We could successfully trace the temporal history of two characteristic break energies (peak energy and cutoff energy) and they show the time dependence of t3t4\propto t^{-3} \sim t^{-4} while the following afterglow spectra are quite stable. This fact indicates that the emitting material of prompt tail is due to completely different dynamics from the shallow decay component. Therefore we conclude the emission sites of two distinct phenomena obviously differ from each other.Comment: 19 pages, 9 figures, accepted for publication in PASJ (Suzaku 2nd Special Issue
    corecore