11 research outputs found

    Mapping the Variability of Soil Texture-Based on Vis-NIR Proximal Sensing

    Get PDF
    Soil texture is one of the soil properties influencing most physical, chemical, and biological soil processes.  Information on soil texture is important to support the agronomic decisions for farm management. The problem is how to provide reliable, fast and inexpensive information of soil texture in numerous soil samples and repeated measurement. The objective of this research was to generate the soil texture map based on laboratory Vis-NIR (Visible - Near Infra-Red) spectroscopy and inverse distance weighted (IDW) interpolation method. An ASD Fieldspec 3 with a spectral range from 350 nm to 2500 nm was used to measure the soil reflectance. Pipette method was used to measure the silt, clay and sand fractions. The partial least square regression (PLSR) was performed to establish the prediction model of soil texture. The predicted values were mapped and showing the information of spatial and temporal variability of soil texture. Keywords: Vis-NIR, spectroscopy, soil texture, PLSR, ID

    Regular pulse checks for patients with non-cardioembolic stroke in rehabilitation hospitals to improve recognition and detection of atrial fibrillation (the ESCORT study): protocol for a prospective multicenter observational study

    Get PDF
    BackgroundCryptogenic stroke (CS) are heterogeneous in origin; however, most CS are embolic mechanism. Paroxysmal atrial fibrillation (AF) is suspected to be a major type of CS that leads to severe cerebral infarction without anticoagulant use. Therefore, the identification of AF is vital in patients with CS. However, patients are often unaware of AF because they have no symptoms, and AF may not be detected on an electrocardiogram (ECG) or Holter ECG on admission. After patients with stroke are treated in the acute phase, they are promptly transferred to a rehabilitation hospital for functional recovery. Once the patient is transferred to a hospital, a few attempts are made to detect AF. In addition, rehabilitation therapists are considered to have insufficient awareness of the possibility of undiagnosed AF.ObjectiveThis study aimed to increase the understanding of the importance of AF detection in patients with ischemic stroke among therapists in rehabilitation hospitals and to investigate whether regular pulse screening can aid in the detection of AF. If AF was detected, we determined the rate and timing of AF detection and identified the patient characteristics.MethodsThis multicenter prospective observational study aimed to detect AF in patients with non-cardiac stroke at rehabilitation hospitals. Therapists performed pulse checks before, during, and after rehabilitation. If arrhythmia or tachycardia was detected, an ECG was performed, and the physician checked for AF. If the patient complained of chest symptoms, electrocardiography (ECG) was performed to check for AF. We investigated the characteristics, laboratory data, cognitive status, complications, such as stroke recurrence, and functional outcomes of patients with AF.ResultsThe study is in the enrollment phase. Recruitment began in September 2022 and will end in August 2023. Patients have provided written informed consent. The main results have been submitted for publication in your journal.ConclusionThe findings of this study will help identify patients with AF in rehabilitation hospitals and improve awareness among therapists

    Emerin plays a crucial role in nuclear invagination and in the nuclear calcium transient.

    Get PDF
    Alteration of the nuclear Ca2+ transient is an early event in cardiac remodeling. Regulation of the nuclear Ca2+ transient is partly independent of the cytosolic Ca2+ transient in cardiomyocytes. One nuclear membrane protein, emerin, is encoded by EMD, and an EMD mutation causes Emery-Dreifuss muscular dystrophy (EDMD). It remains unclear whether emerin is involved in nuclear Ca2+ homeostasis. The aim of this study is to elucidate the role of emerin in rat cardiomyocytes by means of hypertrophic stimuli and in EDMD induced pluripotent stem (iPS) cell-derived cardiomyocytes in terms of nuclear structure and the Ca2+ transient. The cardiac hypertrophic stimuli increased the nuclear area, decreased nuclear invagination, and increased the half-decay time of the nuclear Ca2+ transient in cardiomyocytes. Emd knockdown cardiomyocytes showed similar properties after hypertrophic stimuli. The EDMD-iPS cell-derived cardiomyocytes showed increased nuclear area, decreased nuclear invagination, and increased half-decay time of the nuclear Ca2+ transient. An autopsied heart from a patient with EDMD also showed increased nuclear area and decreased nuclear invagination. These data suggest that Emerin plays a crucial role in nuclear structure and in the nuclear Ca2+ transient. Thus, emerin and the nuclear Ca2+ transient are possible therapeutic targets in heart failure and EDMD. © The Author(s) 2017

    Radioactive contamination mapping of northeastern and eastern Japan by a car-borne survey system, Radi-Probe

    No full text
    We constructed a new car-borne survey system called Radi-Probe with a portable germanium gamma-ray spectrometer onboard a cargo truck, to identify radionuclides and quantify surface contamination from the accident at Fukushima Dai-ichi Nuclear Power Station. The system can quickly survey a large area and obtain ambient dose equivalent rates and gamma-ray energy spectra with good energy resolution. We also developed a new calibration method for the system to deal with an actual nuclear disaster, and quantitative surface deposition densities of radionuclides, such as 134Cs and 137Cs, and kerma rates of each radionuclide can be calculated. We carried out car-borne survey over northeastern and eastern Japan (Tohoku and Kanto regions of Honshu) from 25 September through 7 October 2012. We discuss results of the distribution of ambient dose equivalent rate H∗(10), 134Cs and 137Cs surface deposition densities, spatial variation of 134Cs/137Cs ratio, and the relationship between surface deposition densities of 134Cs/137Cs and H∗(10). The ratio of 134Cs/137Cs was nearly constant within our measurement precision, with average 1.06 ± 0.04 in northeastern and eastern Japan (decay-corrected to 11 March, 2011), although small variations from the average were observed

    Development of a Characteristic X-ray Camera to Identify Contamination by Radioactive Cesium

    No full text
    A proto-type of a characteristic CXRC has been developed to visualize the contamination of Cs-134 and Cs-137 due to the FDNPS accident. It succeeded in reducing the weight of the camera body by measuring characteristic X-rays instead of gamma-rays. Currently, a sensor case with a wall thicker than that presented here is employed. The weight of the latest version of CXRC is 6.6 kg, which is much lighter than that of GCs. We will evaluate the performance of the proto-type of the CXRC in more detail in the future

    Low 134Cs/137Cs ratio anomaly in the north-northwest direction from the Fukushima Dai-ichi Nuclear Power Station

    No full text
    A low 134Cs/137Cs ratio anomaly in the north-northwest (NNW) direction from the Fukushima Dai-ichi Nuclear Power Station (FDNPS) is identified by a new analysis of the 134Cs/137Cs ratio dataset which we had obtained in 2011e2015 by a series of car-borne surveys that employed a germanium gamma-ray spectrometer. We found that the 134Cs/137Cs ratio is slightly lower (0.95, decay-corrected to March 11, 2011) in an area with a length of about 15 km and a width of about 3 km in the NNW direction from the FDNPS than in other directions from the station. Furthermore, the area of this lower 134Cs/137Cs ratio anomaly corresponds to a narrow contamination band that runs NNW from the FDNPS and it is nearly parallel with the major and heaviest contamination band in the west-northwest. The plume trace with a low 134Cs/137Cs ratio previously found by other researchers within the 3-km radius of the FDNPS is in a part of the area with the lower 134Cs/137Cs ratio anomaly that we found. Our result suggests that this lower 134Cs/137Cs ratio anomaly is the area which was contaminated before March 13, 2011 (UTC) in association with the hydrogen explosion of Unit 1 on March 12, 2011 at 06:36 (UTC) and it was less influenced by later subsequent plumes

    Emerin plays a crucial role in nuclear invagination and in the nuclear calcium transient.

    No full text
    Alteration of the nuclear Ca(2+) transient is an early event in cardiac remodeling. Regulation of the nuclear Ca(2+) transient is partly independent of the cytosolic Ca(2+) transient in cardiomyocytes. One nuclear membrane protein, emerin, is encoded by EMD, and an EMD mutation causes Emery-Dreifuss muscular dystrophy (EDMD). It remains unclear whether emerin is involved in nuclear Ca(2+) homeostasis. The aim of this study is to elucidate the role of emerin in rat cardiomyocytes by means of hypertrophic stimuli and in EDMD induced pluripotent stem (iPS) cell-derived cardiomyocytes in terms of nuclear structure and the Ca(2+) transient. The cardiac hypertrophic stimuli increased the nuclear area, decreased nuclear invagination, and increased the half-decay time of the nuclear Ca(2+) transient in cardiomyocytes. Emd knockdown cardiomyocytes showed similar properties after hypertrophic stimuli. The EDMD-iPS cell-derived cardiomyocytes showed increased nuclear area, decreased nuclear invagination, and increased half-decay time of the nuclear Ca(2+) transient. An autopsied heart from a patient with EDMD also showed increased nuclear area and decreased nuclear invagination. These data suggest that Emerin plays a crucial role in nuclear structure and in the nuclear Ca(2+) transient. Thus, emerin and the nuclear Ca(2+) transient are possible therapeutic targets in heart failure and EDMD
    corecore