
 

 

 

  

      JOURNAL OF APPLIED  

GEOSPATIAL INFORMATION 
                 Vol 2 No 1 2018 

http://jurnal.polibatam.ac.id/index.php/JAGI 

ISSN Online: 2579-3608 
 

108 
 

Mapping the Variability of Soil Texture  
Based on VIS-NIR Proximal Sensing 

Sari Virgawati1,*, Muhjidin Mawardi2, Lilik Sutiarso2,  
Sakae Shibusawa3, Hendrik Segah4, Masakazu Kodaira3 

1Dept. of Agrotechnology, University of Pembangunan Nasional “Veteran” Yogyakarta, Indonesia 
2Dept. of Agricultural and Biosystem Engineering, University of Gadjah Mada,  Indonesia 

3Dept. of Environmental and Agric. Engineering, Tokyo University of Agric. and Technology, Japan 
4Dept. of Forestry, Faculty of Agriculture, University of Palangka Raya, Indonesia 

Corresponding author e-mail: sari_virgawati@upnyk.ac.id  

 
 

Received: July 15, 2018 

Accepted: August 03, 2018 

Published: August 04, 2018 

 

Copyright © 2018 by author (s) and 

Scientific Research Publishing Inc. 

Open Access 

Abstract 

Soil texture is one of the soil properties influencing most physical, 
chemical, and biological soil processes.  Information on soil texture is 
important to support the agronomic decisions for farm management. 
The problem is how to provide reliable, fast and inexpensive 
information of soil texture in numerous soil samples and repeated 
measurement. The objective of this research was to generate the soil 
texture map based on laboratory Vis-NIR (Visible - Near Infra-Red) 
spectroscopy and inverse distance weighted (IDW) interpolation 
method. An ASD Fieldspec 3 with a spectral range from 350 nm to 
2500 nm was used to measure the soil reflectance. Pipette method 
was used to measure the silt, clay and sand fractions. The partial 
least square regression (PLSR) was performed to establish the 
prediction model of soil texture. The predicted values were mapped 
and showing the information of spatial and temporal variability of soil 
texture. 
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1. Introduction  

 The knowledge of the spatial and temporal 
variability of soil properties will improve the 
understanding of the field condition, accordingly, the 
agricultural actors can make the best decisions with 
precise treatments for their fields. One of the 
important properties of soil for agricultural 
management is the texture of the soil. 

Soil texture associated with the ability of soil to 
retain water, soil moisture content, soil organic 
matter and minerals which are essential in 
agriculture. Relative amounts of sand, silt and clay 
influences porosity, permeability, ease of tillage and 
nutrient retention. The clay fraction has a significant 
influence on many physical and chemical processes 
that occur in soil. In contrast, the sand and silt 
fraction typically do not have much influence on 
chemical processes (Jury et al., 2004). Soil texture 
does not usually change with management 
practices, however, it may be altered by erosion, 
deposition, truncation, and some other human 
interventions (Osman, 2013). Since it has a major 
effect on the soil fertility levels, information on soil 
texture is important to support the agronomic 
decisions for farm management. The problem is 
how to provide reliable, fast and inexpensive 

information of soil texture in the subsurface from 
numerous soil samples and repeated measurement.  

 
Proximal soil sensing techniques have been 

developed to better understand the soil variability 
(Adamchuk et al., 2012). It is the use of field-based 
sensors to obtain signals from the soil when the 
sensor’s detector is in contact with or close to 
(within 2m) the soil (Viscarra-Rossel et al., 2011). 
Recently, visible and near-infrared (Vis-NIR) diffuse 
reflectance spectroscopy has emerged as a rapid 
and low-cost tool for extensive investigation of soil 
properties.  

Viscarra-Rossel et al. (2016) have developed 
and analyzed a global soil Vis-NIR spectral library to 
characterize the world’s soil. They recorded the 
spectra with Fieldspec®, Agrispec®, Terraspec® or 
Labspec® instruments with a spectral range of 350-
2500 nm and mostly with a contact probe® or 
muglite® lightsource.  

There are several soil attributes that often are 
well estimated with Vis-NIR spectroscopy. The most 
obvious ones are soil texture, especially clay 
content, mineralogy, the content of soil organic 
carbon or soil organic matter and soil water 
(Stenberg et al., 2010). Soil Vis-NIR reflectance 
spectra contain valuable information for predicting 
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soil textural fractions (Conforti et al., 2015). 
Reflectance was relatively high for soils with loamy 
sand texture with over 70% sand content.  

 
The quantitative spectral analysis of soil using 

Vis-NIR reflectance spectroscopy requires 
sophisticated statistical techniques to discern the 
response of soil attributes from spectral properties. 
Various methods have been used to relate a soil 
spectrum to soil attributes (Gholizadeh et al., 2014).  

The most common calibration methods applied 
are based on linear regressions, namely stepwise 
multiple linear regression (SMLR), principal 
component regression (PCR), and partial least 
squares regression (PLSR). PCR and PLSR 
techniques can cope with data containing large 
numbers of predictor variables that are highly 
collinear. However, PLSR is often preferred by 
analysts because it relates the response and 
predictor variables so that the model explains more 
of the variance in the response with fewer 
components, it is more interpretable and the 
algorithm is computationally faster (Stenberg et al., 
2010). Viscarra-Rossel et al. (2006) agreed with 
Geladi and Kowalski (1986) that PLSR takes 
advantage of the correlation that exists between the 
spectra and the soil, thus the resulting spectral 
vectors are directly related to the soil attribute.  

The final construction of a map corresponding to 
a parcel is performed based on the estimation of the 
values of a variable at non-sampled points, using a 
spatial interpolation method (Andreo, 2013). There 
are several interpolation methods, such as IDW 
(Inverse Distance Weighted), Kriging, Spline, etc. 
There is no general method that is suitable for all 
problems; it depends on the nature of the variable 
and on the time-scale on which the variable is 
represented (Prim, 2014).  

Mapping on spatial and temporal soil variability 
has been the part of farm management in precision 
farming activities (Auernhammer et al., 2015). This 
research offers an integrated method of proximal 
soil sensing using Vis-NIR spectroscopy to detect 
the soil properties and the technology for mapping 
variability using geospatial analysis. With this 
method, soil testing for numerous samples and 
repeated measurements are more effective and 
efficient to arrange the Site Specific Farm 
Management (SSFM). The objective of this research 
was to generate the map of soil texture variability 
based on laboratory Vis-NIR spectroscopy and 
inverse distance weighted (IDW) interpolation 
method. 
 
2. The Methods 

The research was conducted in three phases of 
activities i.e. (1) collecting soil data by sampling and 
measuring the soil properties, (2) data analysis to 
determine the prediction model of soil properties, 
and (3) create the spatial and temporal map of soil 
variability. 

 
2.1. Research Area 

The research was conducted at soybean farms 
in two locations, i.e. Natah Village, Nglipar District, 
Gunungkidul Regency (7°51'39.0"S, 110°39'19.4"E) 
and Jatimulyo Village, Dlingo District, 

Bantul Regency (7°55'22.5"S, 110°29'08.7"E) in 
Yogyakarta Province (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Location of the research area:  
G-field: Nglipar, Gunungkidul; B-field: Dlingo, Bantul   

(Background map source: ESRI et al., 2016) 

 
The elevation of Nglipar ranges from 200 to 210 

m asl. While Dlingo elevation ranges from 190 to 
200 m asl. The slope varies between 5° to 10° 
which Dlingo was steeper than Nglipar. 

 
2.2. Materials and Instruments 

Soil was the main material to be observed in this 
research. The instruments used were: 
a. Soil sampling tools (auger, trowel, bucket, sticks, 

zip lock plastic bag, marker, etc.). 
b. GPS Garmin 60 csx. 
c. Ring samples (Eijkelkamp) with 5 cm height and 

5 cm diameter. 
d. The Analytical Spectral Devices FieldSpec® 3 

(ASD Inc., Boulder, Colorado, USA), a portable 
spectroradiometer with a spectral range from 
350 nm to 2500 nm. 

e. Spectralon® Diffuse Reflectance Standard, a 
white reference panel for reflectance calibration. 

f. Black aluminum ring plate to hold up the ASD 
probe vertically (modified by TUAT Laboratory), 

g. A set of tools for texture analysis in soil Lab. 
 

2.3. Soil Sampling 

Due to the irregular and terrace shapes of the 
fields (Fig. 2), the layout of sample points was set 
up using the grid method combined with a transect 
line of a 5-meter interval. In Google Earth the terrain 
data is available and the users can create their own 
points and areas of interest (Lubis et al., 2017). 
There were 30 sample points for each field marked 
with bamboo sticks. The coordinates of the field 
boundaries and sampling points were recorded 
using GPS. The soil was sampled at 2 stages within 
one cropping season from October 2016 to January 
2017, i.e. before planting and after harvesting the 
soybeans. Each point was taken using auger at a 
depth of 5-15 cm. The total samples from 2 
locations and 2 stages sampling were 40 samples 
for texture analysis and 120 samples for 
spectroscopic measurements. All samples were air-
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dried, then gently crushed to break up larger 
aggregates, afterwards removed the visible roots 
and each sample was sieved at 2 mm strainer. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Sampling layout. above:  Nglipar (G) (1500 m2); 
below: Dlingo (B) site (1300 m2)  

(Modified from Google Earth 2012) 

 
2.4. Soil texture analysis 

The soil texture was analyzed by the Soil 
Analytical Services Laboratory at UPN “Veteran” 
Yogyakarta using Robinson’s pipette method to 
determine the percentage of sand, silt, and clay.  

 
2.5. Laboratory Vis-NIR Spectroscopy 

The spectroscopy measurement was performed 
at the Agricultural Laboratory, University of 
Palangka Raya, Central Kalimantan, using ASD 
Field-spec® 3 350-2500 nm spectroradiometer. 
Each soil sample was placed into a 5 cm dia. ring 
sample (Eijkelkamp), and flattened the surface. A 
black aluminum ring plate (modified by TUAT 
Laboratory, Japan) was fitted on the top of ring 
sample in order to hold the ASD probe of the optic 
sensors and keep the same distance from the probe 
tip to the sample surface (Fig. 3).  
 

 

Fig. 3.  Soil reflectance measurement.  
left: soils in ring sample 

right: The ASD probe was inserted into a black aluminum 
ring plate at the sample surface 

 
The reflectance of each sample was scanned 10 

times with different positions by moving the ring 
sample circularly, and the results averaged in post-
processing. Every 15 minutes the instrument was 
calibrated to a reflectance standard by scanning the 
white spectralon panel. The reflectance value of 
each spectrum was recorded in the computer 
accompanied by the instrument. A ViewSpecPro 
software had been installed to translate from binary 
to ASCII. 

 
2.6. Multivariate Statistical Analysis 

The data of soil texture was compiled in a 
worksheet of MS Excel with such format compatible 
to be exported to the Unscrambler X software to 
perform the multivariate analysis. The measured 
reflectance (R) spectra were transformed in 
absorbance through the log (1/R) to reduce noise, 
offset effects, and to enhance the linearity between 
the measured absorbance and soil properties 
(Conforti et al., 2015). To enhance weak signals and 
remove noise due to diffuse reflection, the 
absorbance spectra were pre-treated using the 
second derivative Savitzky and Golay method 
(Gholozadeh et al., 2014). Moreover, both edges of 
the spectra were removed as these parts of the 
spectra were unstable and rich in noise (Aliyah et 
al., 2015).  

The calibration models were subsequently 
developed by applying the partial least-square 
regression (PLSR) technique coupled with full cross-
validation to establish the relationship between the 
referenced value of soil textures with the pre-treated 
Vis-NIR soil absorbance spectra from the 
corresponding locations (Aliyah et al., 2015). Three 
calibration models were developed, i.e. sand, silt 
and clay models for each location.  

The selection criteria of any pretreatments were 
the largest coefficient of multiple determinations (R2) 
and the smallest of Root Mean Square Error 
(RMSE). The full cross-validation ability of PLSR 
was given by the value of residual prediction 
deviation (RPD). The ability of Vis-NIR to predict 
values of soil properties can be grouped into three 
categories based on RPD values: category A or 

excellent (RPD >2.0) includes soil properties with 
measured vs. predicted R2 values between 0.80 and 
1.00; category B or good (RPD = 1.4~2.0) and R2 
values between 0.50 and 0.80, and category C or 

unreliable (RPD <1.4; ) and R2 < 0.50 (Chang et al., 
2001). RPD was given by the ratio of the standard 
deviation (SD) of the reference dataset to the root 
mean square error of full cross-validation (RMSEval), 
as in Equation (1): 

 
RPD = SD. RMSEval -1   (1) 
 

The selected calibration model was used to predict 
the soil textural fraction of new samples. 
 
2.7. Mapping the soil texture variability   

The ArcGIS v10.2 software was applied to 
create the map of soil texture variability. The soil 
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texture prediction values of all recorded sample 
points coordinates were compiled in one excel 
worksheet and used as a database (*.mxd file) to 
create feature classes or shapefiles (*.shp file) from 
the catalog in ArcGIS. The position of sample points 
in each field were drawn as a basemap layer to all 
given information in the attribute table. The 
geostatistical analyst with inverse distance 
weighting (IDW) method was used to perform the 
spatial interpolation.  
 
3. Result and Discussion  

3.1. Site Description 

Nglipar and Dlingo had a tropical climate and 
classified as Am by Köppen and Geiger. The 
average annual temperatures of Nglipar and Dlingo 
were 25.2°C and 25.8°C, and the average rainfalls 
were 2,083 mm and 2,019 mm (Merkel, 2017).  

Soil types in the study area were classified as 
Hapludults and Dystrudepts at Nglipar, while at 
Dlingo were classified as Hapludalfs, Eutrudepts, 
and Udorthents (BBSDLP, 2016).  

The texture of all soil samples in this research 
were classified as clay.  

 
3.2. Soil Reflectance 

Soil texture affects soil optical properties. Light is 
trapped in the rough surfaces of the coarse soil 
particles. For example, if iron and lime are present, 
a stronger reflectance is received than if the soil 
material was fine textured and dry.  

Variations in soil reflectance occur where there 
is a change in the distribution of light and shadow 
areas with surface roughness areas (Sahu, 2008). 
Fig. 4 presents the soils reflectance of Nglipar (G) 
and Dlingo (B), measured before planting and after 
harvesting. 
 

 

 

 

 

 

 

  

 

 

 

 
 
 
 

 Fig. 4. The soil reflece of Nglipar (above) and Dlingo (below) before planting and after harvesting  

 
3.3. The Soil Texture Prediction Model  

The data used in PLSR were recalculated to find 
the best calibration model by removing the outliers 
at maximum 4 samples. The summary of PLSR 
results is shown in Table 4.  

The prediction model that shows the correlation 
between the soil reflectance and soil property are 
written in the matrix form as shown in Equation 2. 
For soil texture prediction models, the matrices are 
presented in Equations 3, 4 and 5. 

The better results obtained by using the PLSR 
method are clearly due to the fact that PLSR takes 
advantage of the use of the entire spectral signature 
(Curcio et al., 2013). The regression coefficient 
plotted in Fig. 5 shows the investigated spectrum 
that should be considered important for the 
prediction of soil textures. The size of the regression 

coefficients represents the importance of the 
absorption band.  

Table 4. Summary of PLSR Results and RPD for 
Textural Fraction Calibration Models 

Location G (Nglipar, GK) B (Dlingo, Bantul) 

PLSR 
result 

Sand Silt Clay Sand Silt Clay 

Used 
samples 

16 16 16 16 16 16 

R2
cal 0.99 0.99 0.99 0.99 0.99 0.99 

RMSEcal 0.18 0.16 0.23 0.35 0.28 0.10 

R2
val 0.67 0.79 0.83 0.69 0.44 0.41 

RMSEval 2.95 2.07 2.77 2.67 2.80 2.62 

SD 4.72 4.60 6.01 4.40 3.56 3.57 

RPD 
value 

1.60 2.22 2.17 1.65 1.27 1.36 

G 25 

G 28 

G 31 

G SOIL REFLECTANCE – AFTER HARVESTING 

G 28 

G 25 

G 31 

G SOIL REFLECTANCE – BEFORE PLANTING 

B SOIL REFLECTANCE – BEFORE PLANTING B SOIL REFLECTANCE – AFTER HARVESTING 

B 24 
B 20 

B 5 
B 8 
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category* B A A B C C 
* A: excellent;  B: good;  C: unreliable 

 
 

 

(
𝑦𝐺
𝑦𝐵
) = (

1
1

  𝑆𝐺600 𝑆𝐺610
  𝑆𝐵600 𝑆𝐵610

    
… 𝑆𝐺2300
… 𝑆𝐵2300

)

(

 
 

𝛽𝐺0 𝛽𝐵0
𝛽𝐺600 𝛽𝐵600
𝛽𝐺610 𝛽𝐵610
⋮        ⋮

𝛽𝐺2300 𝛽𝐵2300)

 
 
+ ( 

𝜀𝐺
𝜀𝐵
)               [2] 

 
where:   
y  are the soil property value  
S are the 2nd derivative absorption spectra value  
600, 610,..., 2300  

are the selected wavelength from 600 nm to 2300 
nm with 10 nm interval 

  
β are the regression coefficients 

 ε are the random error 
 G, B stand for research location  
      G (Gunungkidul) and B (Bantul) 

 
Sand Fraction Prediction Model 

(
𝑆𝑎𝑛𝑑𝐺
𝑆𝑎𝑛𝑑𝐵

) = (
1
1
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… 𝑆𝐺2300
… 𝑆𝐵2300

)

(
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−20001.4 −13738.2
     3507.4 −5018.4

     ⋮             ⋮
  −6728.7 −23726.4)

 
 
+ (  

𝜀𝐺
𝜀𝐵
) [3] 

 
Silt Fraction Prediction Model 

(
𝑆𝑖𝑙𝑡𝐺
𝑆𝑖𝑙𝑡𝐵

) = (
1
1

   𝑆𝐺600 𝑆𝐺610
  𝑆𝐵600 𝑆𝐵610

    
… 𝑆𝐺2300
… 𝑆𝐵2300

)

(

 
 

13.91 38.37
3996.3 2497.3
6348.3 −8953.6
   ⋮               ⋮

  1617.0    8273.7)

 
 
+ (  

𝜀𝐺
𝜀𝐵
)   [4] 

 
Clay Fraction Prediction Model  

(
𝐶𝑙𝑎𝑦𝐺
𝐶𝐿𝑎𝑦𝐵

) = (
1
1

   𝑆𝐺600 𝑆𝐺610
  𝑆𝐵600 𝑆𝐵610

    
… 𝑆𝐺2300
… 𝑆𝐵2300

)

(

 
 

55.39 46.67
15878.9 12431.8
−24354.3 6223.1
    ⋮                ⋮

12857.3 −4972.0 )

 
 
+ (  

𝜀𝐺
𝜀𝐵
)   [5] 

 

. 

                 
Fig. 5a. The regression coefficients of Sand-G (left) and Sand-B (right)  

                  
Fig. 5b. The regression coefficients of Silt-G (left) and Silt-B (right)  
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Figure 5c. The regression coefficients of Clay-G (left) and Clay-B (right)  

 

3.4. The Spatial and Temporal Variability Map  

The results of mapping using IDW interpolation 
method are presented in Fig. 8 for Nglipar (G) soils 
and Fig. 6 for Dlingo (B). In these spatial and 
temporal variability maps, the predicted soil 
fractional contents were grouped by 5% interval 
value with the gradual color base.  

 
Though all the soil samples were classified as 

clay texture, the fractional distribution had shifted 
during the growth stages. This movement probably 
caused by many factors, such as the terraced shape 
that made soil deposition through run-off. 
 

 

 

 

 

 

 

Fig. 6a. The spatial and temporal maps of sand variability at Nglipar (G) 

 

 

 

 

 

 

 

Fig. 6b. The spatial and temporal maps of silt variability at Nglipar (G)  

 

 

 

 

 

 

 

Fig. 6c. The spatial and temporal maps of clay variability at Nglipar (G) 
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Fig. 6d. The spatial and temporal maps of sand variability at Dlingo (B) 

 

 

 

 

 

 

 

 

 

 

Fig. 6e. The spatial and temporal maps of silt variability at Dlingo (B) 

 

 

 

 

 

 

 

 

 

 

Fig. 6f. The spatial and temporal map of clay variability at Dlingo (B) 
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From the reflectance graph of Nglipar (G) and 

Dlingo (B) soils in Fig. 6, the samples of G25, 
G28, G31, B05, B08, B20, and B24 were taken as 
examples to interpret the relationship between the 
prediction value described in Fig. 8 and 9. The 
lower clay content of Nglipar (G) soil showed 
higher reflectance, and vice versa, the higher clay 
content of Dlingo (B) soil performed lower 
reflectance. It seemed the mixture of more sand, 
more silt, and less clay would result in higher 
reflectance for Nglipar (G) soil, but it did not work 
for Dlingo (B) soil. This trends also could be 
explained statistically by the R2

val and RPD values 
(Table 4). The model of Nglipar (G) soil able to 
predict silt and clay content with excellent 
performance (R2

val ≥ 0.8; RPD > 2), while the 
model of Dlingo (B) soil were unreliable to predict 
silt and clay (R2

val < 0.5; RPD < 1.4). 
The selection of the spectral data pretreatment 

process, such as the derivative order, the number 
of smoothing point, and removing some parts of 
the spectra, was following a trial and error 
procedure. It needs to make more trial to find the 
best pretreatment and Vis–NIR wavelength 
ranges.  The selection of interpolation method 
also affects the information in the map that may 
be inconsistent with the predicted appearance in 
the field. Furthermore, in this study, the elevation 
difference between the sample points was not 
taken into account, whereas this would greatly 
affect the value of predicted soil properties in the 
terraced field. 
 
4. Conclusion  

The ability of Vis-NIR spectra to predict the soil 
fractional content using PLSR method resulted in 
different performance. Referring to the model 
accuracy classification using RPD value, the 
selected calibration models proved a good 
performance of sand prediction for Nglipar and 
Dlingo soils. The prediction of silt and clay showed 
excellent performance for Nglipar, while for Dlingo 
the selected model showed unreliable 
performance to predict its silt and clay. Different 
pretreatment process of spectral data should be 
performed in order to improve the correlations 
between the measured soil fractional content and 
the spectra. The elevation of each sample point in 
the terrace field should be included in the 
calculation so that the predicted value of the 
interpolation result can be more accurate. For the 
best result, another interpolation method needs to 
be compared in order to obtain more accurate 
results. This research was not only conducting the 
soil texture mapping but also mapping other soil 
properties, i.e. soil moisture, pH, soil organic 
matter, N, P, K, Fe, and CEC, using the same 
method. Hopefully, this conceptual framework of 
using the Vis-NIR spectroscopy could be 
developed to accelerate the mapping of soil 
variability in Indonesia. 
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