76 research outputs found
A Substellar Companion to Pleiades HII 3441
We find a new substellar companion to the Pleiades member star, Pleiades HII
3441, using the Subaru telescope with adaptive optics. The discovery is made as
part of the high-contrast imaging survey to search for planetary-mass and
substellar companions in the Pleiades and young moving groups. The companion
has a projected separation of 0".49 +/- 0".02 (66 +/- 2 AU) and a mass of 68
+/- 5 M_J based on three observations in the J-, H-, and K_S-band. The spectral
type is estimated to be M7 (~2700 K), and thus no methane absorption is
detected in the H band. Our Pleiades observations result in the detection of
two substellar companions including one previously reported among 20 observed
Pleiades stars, and indicate that the fraction of substellar companions in the
Pleiades is about 10.0 +26.1/-8.8 %. This is consistent with multiplicity
studies of both the Pleiades stars and other open clusters.Comment: Main text (14 pages, 4 figures, 4 tables), and Supplementary data (8
pages, 3 tables). Accepted for Publications of Astronomical Society of Japa
Indications of M-Dwarf Deficits in the Halo and Thick Disk of the Galaxy
We compared the number of faint stars detected in deep survey fields with the current stellar distribution model of the Galaxy and found that the detected number in the H band is significantly smaller than the predicted number. This indicates that M-dwarfs, the major component, are fewer in the halo and the thick disk. We used archived data of several surveys in both the north and south field of GOODS (Great Observatories Origins Deep Survey), MODS in GOODS-N, and ERS and CANDELS in GOODS-S. The number density of M-dwarfs in the halo has to be 20 +/- 13% relative to that in the solar vicinity, in order for the detected number of stars fainter than 20.5 mag in the H band to match with the predicted value from the model. In the thick disk, the number density of M-dwarfs must be reduced (52 +/- 13%) or the scale height must be decreased (approximately 600 pc). Alternatively, overall fractions of the halo and thick disks can be significantly reduced to achieve the same effect, because our sample mainly consists of faint M-dwarfs. Our results imply that the M-dwarf population in regions distant from the Galactic plane is significantly smaller than previously thought. We then discussed the implications this has on the suitability of the model predictions for the prediction of non-companion faint stars in direct imaging extrasolar planet surveys by using the best-fit number densities
- …