1,365 research outputs found

    Acceleration Method of Neighbor Search with GRAPE and Morton-ordering

    Full text link
    We describe a new method to accelerate neighbor searches on GRAPE, i.e. a special purpose hardware that efficiently calculates gravitational forces and potentials in NN-body simulations. In addition to the gravitational calculations, GRAPE simultaneously constructs the lists of neighbor particles that are necessary for Smoothed Particle Hydrodynamics (SPH). However, data transfer of the neighbor lists from GRAPE to the host computer is time consuming, and can be a bottleneck. In fact, the data transfer can take about the same time as the calculations of forces themselves. Making use of GRAPE's special treatment of neighbor lists, we can reduce the amount of data transfer if we search neighbors in the order that the neighbor lists, constructed in a single GRAPE run, overlap each other. We find that the Morton-ordering requires very low additional calculation and programming costs, and results in successful speed-up on data transfer. We show some benchmark results in the case of GRAPE-5. Typical reduction in transferred data becomes as much as 90%. This method is suitable not only for GRAPE-5, but also GRAPE-3 and the other versions of GRAPE.Comment: 9 pages, 6 figures, accepted for publication in PAS

    Equation of State for Parallel Rigid Spherocylinders

    Full text link
    The pair distribution function of monodisperse rigid spherocylinders is calculated by Shinomoto's method, which was originally proposed for hard spheres. The equation of state is derived by two different routes: Shinomoto's original route, in which a hard wall is introduced to estimate the pressure exerted on it, and the virial route. The pressure from Shinomoto's original route is valid only when the length-to-width ratio is less than or equal to 0.25 (i.e., when the spherocylinders are nearly spherical). The virial equation of state is shown to agree very well with the results of numerical simulations of spherocylinders with length-to-width ratio greater than or equal to 2

    Will Nonlinear Peculiar Velocity and Inhomogeneous Reionization Spoil 21cm Cosmology from the Epoch of Reionization?

    Full text link
    The 21cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization ( 80% ionized).Comment: 2 figures, matches published PRL versio

    A Water Maser and Ammonia Survey of GLIMPSE Extended Green Objects (EGOs)

    Full text link
    We present the results of a Nobeyama 45-m water maser and ammonia survey of all 94 northern GLIMPSE Extended Green Objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5 micron emission. We observed the ammonia (1,1), (2,2), and (3,3) inversion lines, and detect emission towards 97%, 63%, and 46% of our sample, respectively (median rms ~50 mK). The water maser detection rate is 68% (median rms ~0.11 Jy). The derived water maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs. To explore the degree of variation among EGOs, we analyze subsamples defined based on MIR properties or maser associations. Water masers and warm dense gas, as indicated by emission in the higher-excitation ammonia transitions, are most frequently detected towards EGOs also associated with both Class I and II methanol masers. 95% (81%) of such EGOs are detected in water (ammonia(3,3)), compared to only 33% (7%) of EGOs without either methanol maser type. As populations, EGOs associated with Class I and/or II methanol masers have significantly higher ammonia linewidths, column densities, and kinetic temperatures than EGOs undetected in methanol maser surveys. However, we find no evidence for statistically significant differences in water maser properties (such as maser luminosity) among any EGO subsamples. Combining our data with the 1.1 mm continuum Bolocam Galactic Plane Survey, we find no correlation between isotropic water maser luminosity and clump number density. Water maser luminosity is weakly correlated with clump (gas) temperature and clump mass.Comment: Astrophysical Journal, accepted. Emulateapj, 24 pages including 24 figures, plus 9 tables (including full content of online-only tables
    corecore