19 research outputs found

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    p53 and Mitochondrial DNA Their Role in Mitochondrial Homeostasis and Toxicity of Antiretrovirals

    Get PDF
    The roles and actions of the tumor suppressor protein p53 have been extensively studied with regard to nuclear events, including transcription and DNA damage repair. However, the direct roles of p53 in mitochondrial DNA (mtDNA) replication and function are less well understood. Studies herein used a mitochondrial-targeted p53 (MTS-p53) to determine its effects on both mtDNA abundance and mitochondrial function. MTS-p53 decreased cellular proliferation and mtDNA abundance in HepG2 cells transfected with wild-type (WT) human p53. When MTS-p53 cells were treated with the nucleoside reverse transcriptase inhibitor (NRTI), 2′,3′-dideoxycytidine or 2′,3′-dideoxyinosine, mtDNA depletion that resembled untransfected controls was observed in both instances. p53-Overexpressing cells showed reduced mitochondrial function by oximetry, including a reduction in maximal respiratory capacity and reserve capacity. A truncated p53 (MTS-p53-290) was generated for localization exclusively to the mitochondria. MTS-p53-290 cells proliferated at control levels but displayed decreased mtDNA abundance and mitochondrial function with NRTI treatment. The MTS-p53-290 cells demonstrated that only the nuclear fraction of p53 controlled cellular proliferation, which was supported by the MTS-p53 results. Data herein indicate that overexpression of p53 in the mitochondria reduces mtDNA abundance and increases the sensitivity of mammalian cells to NRTI exposure by reducing mitochondrial function

    Live Cell Detection of Poly(ADP-Ribose) for Use in Genetic and Genotoxic Compound Screens

    No full text
    Poly(ADP-ribose) (PAR) is a molecular scaffold that aids in the formation of DNA repair protein complexes. Tools to sensitively quantify PAR in live cells have been lacking. We recently described the LivePAR probe (EGFP fused to the RNF146-encoded WWE PAR binding domain) to measure PAR formation at sites of laser micro-irradiation in live cells. Here, we present two methods that expand on the use of LivePAR and its WWE domain. First, LivePAR enriches in the nucleus of cells following genotoxic challenge. Image quantitation can identify single-cell PAR formation following genotoxic stress at concentrations lower than PAR ELISA or PAR immunoblot, with greater sensitivity to genotoxic stress than CometChip. In a second approach, we used the RNF146-encoded WWE domain to develop a split luciferase probe for analysis in a 96-well plate assay. We then applied these PAR analysis tools to demonstrate their broad applicability. First, we show that both approaches can identify genetic modifications that alter PARylation levels, such as hyper-PARylation in BRCA2-deficient cancer cells. Second, we demonstrate the utility of the WWE split luciferase assay to characterize the cellular response of genotoxins, PARP inhibitors, and PARG inhibitors, thereby providing a screening method to identify PAR modulating compounds

    Stability and sub-cellular localization of DNA polymerase β is regulated by interactions with NQO1 and XRCC1 in response to oxidative stress

    Get PDF
    textabstractProtein-protein interactions regulate many essential enzymatic processes in the cell. Somatic mutations outside of an enzyme active site can therefore impact cellular function by disruption of critical protein-protein interactions. In our investigation of the cellular impact of the T304I cancer mutation of DNA Polymerase β (Polβ), we find that mutation of thi
    corecore