2,085 research outputs found

    Drivers of disease emergence and spread: Is wildlife to blame?

    Get PDF
    The global focus on wildlife as a major contributor to emerging pathogens and infectious diseases (EIDs) in humans and domestic animals is not based on field, experimental or dedicated research, but mostly on limited surveys of literature, opinion and the assumption that biodiversity harbours pathogens. The perceived and direct impacts of wildlife, from being a reservoir of certain human and livestock pathogens and as a risk to health, are frequently overstated when compared to the Global burden of disease statistics available from WHO, OIE and FAO. However organisms that evolve in wildlife species can and do spill-over into human landscapes and humans and domestic animal population and, where these organisms adapt to surviving and spreading amongst livestock and humans, these emerging infections can have significant consequences. Drivers for the spill-over of pathogens or evolution of organisms from wildlife reservoirs to become pathogens of humans and domestic animals are varied but almost without exception poorly researched. The changing demographics, spatial distribution and movements, associated landscape modifications (especially agricultural) and behavioural changes involving human and domestic animal populations are probably the core drivers of the apparent increasing trend in emergence of new pathogens and infectious diseases over recent decades

    Wildlife-livestock interactions and risk areas for cross-species spread of bovine tuberculosis

    Get PDF
    The transmission of diseases between livestock and wildlife can be a hindrance to effective disease control. Maintenance hosts and contact rates should be explored to further understand the transmission dynamics at the wildlife-livestock interface. Bovine tuberculosis (BTB) has been shown to have wildlife maintenance hosts and has been confirmed as present in the African buffalo (Syncerus caffer) in the Queen Elizabeth National Park (QENP) in Uganda since the 1960s. The first aim of this study was to explore the spatio-temporal spread of cattle illegally grazing within the QENP recorded by the Uganda Wildlife Authority (UWA) rangers in a wildlife crime database. Secondly, we aimed to quantify wildlife-livestock interactions and cattle movements, on the border of QENP, using a longitudinal questionnaire completed by 30 livestock owners. From this database, 426 cattle sightings were recorded within QENP in 8 years. Thirteen (3.1%) of these came within a 300 m–4 week space-time window of a buffalo herd, using the recorded GPS data. Livestock owners reported an average of 1.04 (95% CI 0.97–1.11) sightings of Uganda kob, waterbuck, buffalo or warthog per day over a 3-month period, with a rate of 0.22 (95% CI 0.20–0.25) sightings of buffalo per farmer per day. Reports placed 85.3% of the ungulate sightings and 88.0% of the buffalo sightings as further than 50 m away. Ungulate sightings were more likely to be closer to cattle at the homestead (OR 2.0, 95% CI 1.1–3.6) compared with the grazing area. Each cattle herd mixed with an average of five other cattle herds at both the communal grazing and watering points on a daily basis. Although wildlife and cattle regularly shared grazing and watering areas, they seldom came into contact close enough for aerosol transmission. Between species infection transmission is therefore likely to be by indirect or non-respiratory routes, which is suspected to be an infrequent mechanism of transmission of BTB. Occasional cross-species spillover of infection is possible, and the interaction of multiple wildlife species needs further investigation. Controlling the interface between wildlife and cattle in a situation where eradication is not being considered may have little impact on BTB disease control in cattle

    Did Neoliberalizing West African Forests Produce a New Niche for Ebola?

    Get PDF
    A recent study introduced a vaccine that controls Ebola Makona, the Zaire ebolavirus variant that has infected 28,000 people in West Africa. We propose that even such successful advances are insufficient for many emergent diseases. We review work hypothesizing that Makona, phenotypically similar to much smaller outbreaks, emerged out of shifts in land use brought about by neoliberal economics. The epidemiological consequences demand a new science that explicitly addresses the foundational processes underlying multispecies health, including the deep-time histories, cultural infrastructure, and global economic geographies driving disease emergence. The approach, for instance, reverses the standard public health practice of segregating emergency responses and the structural context from which outbreaks originate. In Ebola's case, regional neoliberalism may affix the stochastic "friction" of ecological relationships imposed by the forest across populations, which, when above a threshold, keeps the virus from lining up transmission above replacement. Export-led logging, mining, and intensive agriculture may depress such functional noise, permitting novel spillovers larger forces of infection. Mature outbreaks, meanwhile, can continue to circulate even in the face of efficient vaccines. More research on these integral explanations is required, but the narrow albeit welcome success of the vaccine may be used to limit support of such a program.SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Exchange parameters from approximate self-interaction correction scheme

    Full text link
    The approximate atomic self-interaction corrections (ASIC) method to density functional theory is put to the test by calculating the exchange interaction for a number of prototypical materials, critical to local exchange and correlation functionals. ASIC total energy calculations are mapped onto an Heisenberg pair-wise interaction and the exchange constants J are compared to those obtained with other methods. In general the ASIC scheme drastically improves the bandstructure, which for almost all the cases investigated resemble closely available photo-emission data. In contrast the results for the exchange parameters are less satisfactory. Although ASIC performs reasonably well for systems where the magnetism originates from half-filled bands, it suffers from similar problems than those of LDA for other situations. In particular the exchange constants are still overestimated. This reflects a subtle interplay between exchange and correlation energy, not captured by the ASIC.Comment: 10 page

    Searching for the source of Ebola: the elusive factors driving its spillover into humans during the West African outbreak of 2013–2016

    Get PDF
    The natural ecology of Ebola virus infection remains enigmatic. No clear reservoir species has been confirmed but there is evidence of infection in a wide spectrum of mammals, including humans, non-human primates, domestic and wild ungulates and a variety of bat species, both frugivorous and insectivorous. Humans and most other species examined appear to be spillover hosts and suffer disease. Bats are the exception and are tolerant to infection in some laboratory studies. Some surveys show a low prevalence of antibodies against Zaire Ebola virus (ZEBOV) strains in bats during human outbreaks and inter-epidemic periods, and this order of mammals is considered to be the likely reservoir for the virus. Other putative sources include insects but this hypothesis is unproven in the field or laboratory. Moreover, some potential sources, such as aquatic species, have yet to be investigated. There are a number of environmental, human behavioural and ecological risk factors proposed with respect to spillover and spread. In the West African outbreak, which was unprecedented in scale and geographic spread, the source of the spillover remains unproven, although an association exists between the proposed index case and a colony of insectivorous bats. In all but a few Ebola virus disease events, spillover has only been superficially investigated and this was also the case in the West African epidemic. The authors suggest that, to address risks at the human–animal–environmental interface, using a One Health approach, more effort is needed to investigate spillover factors at the time of a ZEBOV epidemic, in addition to conducting inter-epidemic surveys in peridomestic environments. The true prevalence of ZEBOV infection in any species of bats remains unknown. Large-scale, expensive, non-randomised surveys, with low sampling numbers per species, are unlikely to provide evidence for Ebola virus reservoirs or to improve our epidemiological understanding

    Involutive Categories and Monoids, with a GNS-correspondence

    Get PDF
    This paper develops the basics of the theory of involutive categories and shows that such categories provide the natural setting in which to describe involutive monoids. It is shown how categories of Eilenberg-Moore algebras of involutive monads are involutive, with conjugation for modules and vector spaces as special case. The core of the so-called Gelfand-Naimark-Segal (GNS) construction is identified as a bijective correspondence between states on involutive monoids and inner products. This correspondence exists in arbritrary involutive categories

    The One Health path to infectious disease prevention and resilience

    Get PDF

    Spillover of Peste des Petits Ruminants Virus from Domestic to Wild Ruminants in the Serengeti Ecosystem, Tanzania

    Get PDF
    We tested wildlife inhabiting areas near domestic livestock, pastures, and water sources in the Ngorongoro district in the Serengeti ecosystem of northern Tanzania and found 63% seropositivity for peste des petits ruminants virus. Sequencing of the viral genome from sick sheep in the area confirmed lineage II virus circulation
    • …
    corecore