7 research outputs found

    Развој Π½Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π·Π° дизајн Π½Π° симСтрични ΠΈ асимСтрични ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ

    Get PDF
    Π˜ΡΡ‚Ρ€Π°ΠΆΡƒΠ²Π°ΡšΠ°Ρ‚Π° Π²ΠΎ Ρ€Π°ΠΌΠΊΠΈΡ‚Π΅ Π½Π° ΠΎΠ²Π°Π° докторска Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π° сС насочСни Π½Π° Ρ€Π°Π·Π²ΠΎΡ˜ Π½Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡ€ΠΈ Π΄ΠΈΠ·Π°Ρ˜Π½ΠΈΡ€Π°ΡšΠ΅ Π½Π° симСтрични ΠΈ асимСтрични ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ Π·Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π° ΠΏΡ€ΠΈ Π½ΠΈΠ²Π½ΠΎ производство со Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π°Ρ‚Π° Π·Π° Π½Π°ΠΌΠΎΡ‚ΡƒΠ²Π°ΡšΠ΅ Π½Π° Π²Π»Π°ΠΊΠ½Π° (filament winding technology, FW). ΠšΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈΡ‚Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ Π½ΡƒΠ΄Π°Ρ‚ ΡƒΠ½ΠΈΠΊΠ°Ρ‚Π½ΠΈ прСдности Π²ΠΎ однос Π½Π° Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΡ‚Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ ΠΈ сС ΠΊΠ°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΈΡ€Π°Π°Ρ‚ со Ρ€Π΅Π»Π°Ρ‚ΠΈΠ²Π½ΠΎ високи соодноси Ρ˜Π°ΠΊΠΎΡΡ‚/Ρ‚Π΅ΠΆΠΈΠ½Π°, ΠΎΠ΄Π»ΠΈΡ‡Π½ΠΈ Ρ‚Π΅Ρ€ΠΌΠΈΡ‡ΠΊΠΈ ΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΈΡ‡Π½ΠΈ ΡΠ²ΠΎΡ˜ΡΡ‚Π²Π°, Π° Ρ‚ΠΎΠ° Π³ΠΈ ΠΏΡ€Π°Π²Π°Ρ‚ ΠΏΡ€ΠΈΠ²Π»Π΅Ρ‡Π½ΠΈ Π·Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΈ индустрии. ΠŸΠΎΡΠ»Π΅Π΄Π½ΠΈΡ‚Π΅ Π³ΠΎΠ΄ΠΈΠ½ΠΈ Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ Π΅ Π·Π³ΠΎΠ»Π΅ΠΌΠ΅Π½ΠΎ ΠΊΠΎΡ€ΠΈΡΡ‚Π΅ΡšΠ΅Ρ‚ΠΎ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ ΠΈ постои ΠΊΠΎΠ½Ρ‚ΠΈΠ½ΡƒΠΈΡ€Π°Π½ΠΎ ΠΏΠΎΠ±Π°Ρ€ΡƒΠ²Π°ΡšΠ΅ ΠΎΠ΄ страна Π½Π° индустрискитС ΠΊΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚ΠΈ, Π° Ρ‚ΠΎΠ° ја Π½Π°ΠΌΠ΅Ρ‚Π½ΡƒΠ²Π° ΠΏΠΎΡ‚Ρ€Π΅Π±Π°Ρ‚Π° Π·Π° Ρ€Π°Π·Π²ΠΎΡ˜ Π½Π° ΠΎΠ΄ΠΎΠ±Ρ€Π΅Π½ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π·Π° дизајн Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈΡ‚Π΅ Π΄Π΅Π»ΠΎΠ²ΠΈ. Π Π°Π·Π²ΠΎΡ˜ΠΎΡ‚ Π½Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ‚Π΅ Π²ΠΊΠ»ΡƒΡ‡ΡƒΠ²Π° ΠΈΡΡ‚Ρ€Π°ΠΆΡƒΠ²Π°ΡšΠ° ΠΏΠΎΠ²Ρ€Π·Π°Π½ΠΈ со Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΈ Π²Π»ΠΈΡ˜Π°Ρ‚Π΅Π»Π½ΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΈ, ΠΊΠ°ΠΊΠΎ ΡΠ²ΠΎΡ˜ΡΡ‚Π²Π°Ρ‚Π° Π½Π° Π°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈΡ‚Π΅, Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜Π°Ρ‚Π°, условитС Π½Π° ΠΏΡ€ΠΎΡ†Π΅ΡΠΈΡ€Π°ΡšΠ΅, условитС Π½Π° ΠΎΠΏΡ‚ΠΎΠ²Π°Ρ€ΡƒΠ²Π°ΡšΠ΅ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈΠΎΡ‚ Π΄Π΅Π» ΠΈ Π΄Ρ€ΡƒΠ³ΠΎ. Π’ΠΎ Ρ€Π°ΠΌΠΊΠΈΡ‚Π΅ Π½Π° ΠΎΠ²Π°Π° докторска Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π° Ρ€Π°Π·Π²ΠΈΠ΅Π½ΠΈ ΠΈ ΠΎΠ΄ΠΎΠ±Ρ€Π΅Π½ΠΈ сС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π·Π° ΠΏΠ°Ρ‚Π΅ΠΊΠ° Π½Π° Π²Π»Π°ΠΊΠ½Π° со ΠΏΡ€ΠΈΠΌΠ΅Π½Π° Π½Π° Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π° Π·Π° Π½Π°ΠΌΠΎΡ‚ΡƒΠ²Π°ΡšΠ΅ Π½Π° Π²Π»Π°ΠΊΠ½Π° Π·Π° добивањС Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ. Вочноста Π½Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈΡ‚Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΅ ΠΏΠΎΡ‚Π²Ρ€Π΄Π΅Π½Π° ΠΏΡ€Π΅ΠΊΡƒ симулации Π½Π° ΠΏΠ°Ρ‚Π΅ΠΊΠΈΡ‚Π΅ Π½Π° Π²Π»Π°ΠΊΠ½Π°Ρ‚Π° Π²Ρ€Π· симСтрични ΠΈ асимСтрични Ρ„ΠΎΡ€ΠΌΠΈ ΠΈ СкспСримСнтално Ρ‚Π΅ΡΡ‚ΠΈΡ€Π°ΡšΠ΅ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ симСтрични ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΡ†ΠΈ. ΠŸΡ€Π΅ΠΊΡƒ Π°Π½Π°Π»ΠΈΠ·Π° Π½Π° Π΄ΠΎΠ±ΠΈΠ΅Π½ΠΈΡ‚Π΅ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ донСсСни сС Π·Π°ΠΊΠ»ΡƒΡ‡ΠΎΡ†ΠΈ Π·Π° ΠΎΠ΄Π½Π΅ΡΡƒΠ²Π°ΡšΠ΅Ρ‚ΠΎ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈΡ‚Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΡ†ΠΈ спорСд Ρ€Π΅Π΄Π²ΠΈΠ΄Π΅Π½ΠΈΡ‚Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ. Π˜ΡΡ‚Ρ€Π°ΠΆΡƒΠ²Π°ΡšΠ΅Ρ‚ΠΎ ΠΈΠΌΠ° Π²Π°ΠΆΠ½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π° Π²ΠΎ Ρ€Π°Π·Π½ΠΈ индустрии, ΠΊΠ°ΠΊΠΎ всСлСнската, Π²ΠΎΠ·Π΄ΡƒΡ…ΠΎΠΏΠ»ΠΎΠ²Π½Π°Ρ‚Π°, автомобилската, Π²ΠΎΠ΅Π½Π°Ρ‚Π°, поморската ΠΈΡ‚Π½. ΠΊΠ°Π΄Π΅ ΡˆΡ‚ΠΎ сС ΠΏΡ€ΠΈΠΌΠ΅Π½ΡƒΠ²Π°Π°Ρ‚ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ ΠΊΠ°ΠΊΠΎ носСчки ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ. Докторската Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π° ΠΏΠΎΡ‡Π½ΡƒΠ²Π° со ΠΏΡ€Π΅Π³Π»Π΅Π΄ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈΡ‚Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ, Π½ΠΈΠ²Π½ΠΈΡ‚Π΅ ΡΠ²ΠΎΡ˜ΡΡ‚Π²Π°, Π²ΠΈΠ΄ΠΎΠ²ΠΈ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½Π°. Π˜ΡΡ‚ΠΎ Ρ‚Π°ΠΊΠ°, ΠΎΠ±Ρ˜Π°ΡΠ½Π΅Ρ‚Π° Π΅ прСдноста ΠΎΠ΄ ΠΊΠΎΡ€ΠΈΡΡ‚Π΅ΡšΠ΅Ρ‚ΠΎ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈΡ‚Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ Π²ΠΎ однос Π½Π° Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π°Π»Π½ΠΈΡ‚Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π»ΠΈ Π²ΠΎ Ρ€Π°Π·Π½ΠΈ индустрии. ΠŸΠΎΠ½Π°Ρ‚Π°ΠΌΡƒ, опишан Π΅ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΡˆΠΊΠΈΠΎΡ‚ процСс Π½Π° Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π°Ρ‚Π° Π·Π° Π½Π°ΠΌΠΎΡ‚ΡƒΠ²Π°ΡšΠ΅ со Π²Π»Π°ΠΊΠ½Π° ΠΈ Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΡ‚Π΅ Π·Π° дизајн Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ. ΠŸΡ€Π²ΠΈΠΎΡ‚ Π΄Π΅Π» ΠΎΠ΄ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π°Ρ‚Π° Π΅ насочСн Π½Π° Ρ€Π°Π·Π²ΠΎΡ˜ Π½Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° ΠΏΠ°Ρ‚Π΅ΠΊΠΈΡ‚Π΅ Π½Π° двиТСњС Π½Π° Π²Π»Π°ΠΊΠ½Π°Ρ‚Π° Π²ΠΎ FW Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π°Ρ‚Π° Π·Π° добивањС Π½Π° симСтрични ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ, ΠΊΠ°ΠΊΠΎ Ρ†Π΅Π²ΠΊΠΈ, Ρ€Π΅Π·Π΅Ρ€Π²ΠΎΠ°Ρ€ΠΈ ΠΈ сл. Π—Π° ΠΏΡ€Π΅Ρ†ΠΈΠ·Π½ΠΎ ΠΈ Ρ‚ΠΎΡ‡Π½ΠΎ добивањС Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈΡ‚Π΅ Ρ€Π°Π·Π³Π»Π΅Π΄ΡƒΠ²Π°Π½ Π΅ Π°Π³ΠΎΠ»ΠΎΡ‚ Π½Π° Π½Π°ΠΌΠΎΡ‚ΡƒΠ²Π°ΡšΠ΅ Π½Π° Π²Π»Π°ΠΊΠ½Π°Ρ‚Π° ΠΊΠ°ΠΊΠΎ Π²Π»ΠΈΡ˜Π°Ρ‚Π΅Π»Π΅Π½ Ρ„Π°ΠΊΡ‚ΠΎΡ€, Π° останатитС процСсни Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΈ сС Π·Π΅ΠΌΠ΅Π½ΠΈ константни спорСд искуството ΠΎΠ΄ ΠΈΠ½Π΄ΡƒΡΡ‚Ρ€ΠΈΡ˜Π°Ρ‚Π° која ја ΠΏΡ€ΠΈΠΌΠ΅Π½ΡƒΠ²Π° ΠΎΠ²Π°Π° Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΡ˜Π°. ΠŸΠΎΠΊΡ€Π°Ρ˜ дизајн Π½Π° ΠΏΠ°Ρ‚Π΅ΠΊΠ° Π½Π° Π²Π»Π°ΠΊΠ½Π°Ρ‚Π° Π·Π° добивањС Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚, Π½Π°ΠΏΡ€Π°Π²Π΅Π½ Π΅ ΠΈ цСлосСн дизајн Π½Π° Ρ†Π΅Π²ΠΊΠ° Π·Π° Π΄Π° сС ΠΏΠΎΡ‚Π²Ρ€Π΄ΠΈ точноста Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΎΡ‚ ΠΏΡ€Π΅ΠΊΡƒ СкспСримСнтални Ρ‚Π΅ΡΡ‚ΠΈΡ€Π°ΡšΠ°. Π’Ρ€Π· основа Π½Π° Ρ€Π°Π·Π²ΠΈΠ΅Π½ΠΈΡ‚Π΅ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π·Π° ΠΏΠ°Ρ‚Π΅ΠΊΠ° Π½Π° Π²Π»Π°ΠΊΠ½Π° ΠΈ дизајн Π½Π° Ρ†Π΅Π²ΠΊΠ°, ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈ сС симСтрични ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΡ†ΠΈ (ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ Ρ†Π΅Π²ΠΊΠΈ) со Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΈ Π°Π³Π»ΠΈ Π½Π° Π½Π°ΠΌΠΎΡ‚ΡƒΠ²Π°ΡšΠ΅: 10, 30, 45, 60 ΠΈ 90 ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΡ†ΠΈ со ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΡ˜Π° Π½Π° Π°Π³Π»ΠΈΡ‚Π΅ Π½Π° Π½Π°ΠΌΠΎΡ‚ΡƒΠ²Π°ΡšΠ΅. Π‘ΠΈΡ‚Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΡ†ΠΈ сС лабораториски тСстирани Π·Π° Ρ˜Π°Ρ‡ΠΈΠ½Π°Ρ‚Π° Π½Π° ΠΈΡΡ‚Π΅Π³Π½ΡƒΠ²Π°ΡšΠ΅ (hoop tensile strength) Π·Π° ΠΈΡΠΏΠΎΠ»Π½ΡƒΠ²Π°ΡšΠ΅ Π½Π° Π±Π°Ρ€Π°ΡšΠ°Ρ‚Π° Π·Π° ΠΊΠ²Π°Π»ΠΈΡ‚Π΅Ρ‚ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈΡ‚Π΅ Ρ†Π΅Π²ΠΊΠΈ: отпорност Π½Π° висок Π²Π½Π°Ρ‚Ρ€Π΅ΡˆΠ΅Π½ притисок. Од Π΄ΠΎΠ±ΠΈΠ΅Π½ΠΈΡ‚Π΅ Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ бСшС Π·Π°ΠΊΠ»ΡƒΡ‡Π΅Π½ΠΎ Π΄Π΅ΠΊΠ° ΠΏΡ€Π΅Π΄Π²ΠΈΠ΄Π΅Π½ΠΎΡ‚ΠΎ ΠΎΠ΄Π½Π΅ΡΡƒΠ²Π°ΡšΠ΅ Π½Π° симСтричнитС ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ (ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ Ρ†Π΅Π²ΠΊΠΈ) соодвСствува со Ρ€Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈΡ‚Π΅ ΠΎΠ΄ Ρ‚Π΅ΡΡ‚ΠΈΡ€Π°ΡšΠ°Ρ‚Π° Π½Π° Ρ‚Π°ΠΊΠ° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ‚Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΡ†ΠΈ. ΠŸΡ€Π΅ΠΊΡƒ ΠΎΠ²Π° ΠΈΡΡ‚Ρ€Π°ΠΆΡƒΠ²Π°ΡšΠ΅ Ρ€Π°Π·Π²ΠΈΠ΅Π½ΠΈ сС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π·Π° Π΄ΠΈΠ·Π°Ρ˜Π½ΠΎΡ‚ Π½Π° ΠΏΠ°Ρ‚Π΅ΠΊΠ° Π½Π° Π²Π»Π°ΠΊΠ½Π° Π²Ρ€Π· симСтрични ΠΏΠΎΠ²Ρ€ΡˆΠΈΠ½ΠΈ, ΡˆΡ‚ΠΎ Ρ€Π΅Π·ΡƒΠ»Ρ‚ΠΈΡ€Π° Π²ΠΎ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€Π°Π½ΠΎ ΠΈ ΠΏΡ€Π΅Ρ†ΠΈΠ·Π½ΠΎ производство Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ Ρ†Π΅Π²ΠΊΠΈ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»Π½ΠΎ Π³Π΅Π½Π΅Ρ€ΠΈΡ€Π°ΡšΠ΅ Π½Π° ΠΎΡ‚ΠΏΠ°Π΄Π΅Π½ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π». Π’Ρ‚ΠΎΡ€ΠΈΠΎΡ‚ Π΄Π΅Π» ΠΎΠ΄ докторската Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π° Π΅ насочСн Π½Π° ΠΈΡΡ‚Ρ€Π°ΠΆΡƒΠ²Π°ΡšΠ° Π·Π° ΠΏΠΎΠ΄ΠΎΠ±Ρ€ΡƒΠ²Π°ΡšΠ΅ ΠΈ Ρ€Π°Π·Π²ΠΎΡ˜ Π½Π° Π½ΠΎΠ²ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ Π·Π° дизајн Π½Π° ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» Π·Π° ΠΏΠ°Ρ‚Π΅ΠΊΠ° Π½Π° Π²Π»Π°ΠΊΠ½Π° Π·Π° добивањС Π½Π° послоТСни асимСтрични ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ. Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»Π½ΠΎ, Π½Π°ΠΏΡ€Π°Π²Π΅Π½ΠΈ сС ΠΈ Π³Ρ€Π°Ρ„ΠΈΡ‡ΠΊΠΈ симулации Π½Π° Π΄ΠΈΠ·Π°Ρ˜Π½ΠΈΡ‚Π΅. ΠŸΡ€Π΅Π΄Π²ΠΈΠ΄ΡƒΠ²Π°ΡšΠ΅Ρ‚ΠΎ Π½Π° ΠΎΠ΄Π½Π΅ΡΡƒΠ²Π°ΡšΠ΅Ρ‚ΠΎ Π½Π° асимСтричнитС ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ Ρ†Π΅Π²ΠΊΠΈ Π΅ Π½Π°ΠΏΡ€Π°Π²Π΅Π½ΠΎ Π²Ρ€Π· основа Π½Π° Π·Π°ΠΊΠ»ΡƒΡ‡ΠΎΡ†ΠΈΡ‚Π΅ ΠΎΠ΄ СкспСримСнталнитС Ρ‚Π΅ΡΡ‚ΠΈΡ€Π°ΡšΠ° ΠΎΠ΄ ΠΏΡ€Π²ΠΈΠΎΡ‚ Π΄Π΅Π» Π·Π° симСтрични ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ Ρ†Π΅Π²ΠΊΠΈ ΠΈ со Π»ΠΎΠ³ΠΈΡ‡ΠΊΠΈ ΠΏΡ€Π΅ΡΠ»ΠΈΠΊΡƒΠ²Π°ΡšΠ° Π½Π° Ρ‚ΠΎΠ° ΠΎΠ΄Π½Π΅ΡΡƒΠ²Π°ΡšΠ΅ Π²Ρ€Π· послоТСнитС асимСтрични ΠΌΠΎΠ΄Π΅Π»ΠΈ. Докторска Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π° Π΄Π°Π²Π° Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΈ сознанија Π·Π° ΠΏΡ€Π΅Ρ†ΠΈΠ·Π½ΠΎ Π½Π°ΠΌΠΎΡ‚ΡƒΠ²Π°ΡšΠ΅ Π½Π° Π²Π»Π°ΠΊΠ½Π°Ρ‚Π° ΠΏΡ€Π΅ΠΊΡƒ Ρ€Π°Π·Π²ΠΈΠ΅Π½ΠΈΡ‚Π΅ ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π΅Π½ΠΈΡ‚Π΅ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π·Π° добивањС Π½Π° ΠΊΠ²Π°Π»ΠΈΡ‚Π΅Ρ‚Π½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ Π·Π° ΡƒΠΏΠΎΡ‚Ρ€Π΅Π±Π° Π²ΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΈ индустрии. ΠšΠ»ΡƒΡ‡Π½ΠΈ Π·Π±ΠΎΡ€ΠΎΠ²ΠΈ: ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ, дизајн Π½Π° ΠΏΠ°Ρ‚Π΅ΠΊΠ°, симСтрични ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈ, асимСтрични ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚

    Computer aided (filament winding) tape placement for elbows. Practically orientated algorithm

    Get PDF
    Filament winding is one of the most used automated techniques for manufacturing of composite objects with different open-end or closed-end structures. Mathematical model for covering an elbow mandrel with composite material is considered. The nature of the comprising equations is elaborated in detail. A practically orientated algorithm for filament winding for elbows is formulated and its open-source implementations in Python and MATLAB are presented. The results from the constructed algorithm are presented and discussed. Keywords: filament winding for elbows, tape placement for elbows, practical algorithm, open-source, CAD

    Effect of Process Parameters on Thermal and Mechanical Properties of Filament Wound Polymer-Based Composite Pipes

    Get PDF
    Abstract: The aim of this study was to investigate the mechanical and thermal properties of composite pipes based on epoxy resin and glass fibers produced by filament winding (FW) technology. Epoxy resins are widely used polymers in FW composite structures. The thermal characterization of the neat epoxy resin, curing, and post-curing characteristics for the determination of polymerization and glass transition temperature was performed, which is important for the mechanical properties of polymer composite pipes. In the present work, the applicability of the full factorial experimental design in predicting the hoop tensile and compressive strengths of glass fiber/epoxy resin composite pipes was investigated. The composite pipes in accordance with the 23 full factorial experimental design by using of three parameters and two levels of variation were prepared. The winding speed of the composites was taken to be the first factor, the second was the fiber tension, and the third was winding angle. To approximate the response, i.e., the mechanical properties of the composite pipes within the study domain, the first-order linear model with the interaction was used. The influence of each individual factor to the response function was established, as well as the influence of the interaction of the two and three factors. Additionally, those results were completed with the thermal characterization of the polymer composite pipes. From received results from mechanical and thermal characterization, it was concluded that the properties of composite specimens were highly affected by the analyzed parameters in filament winding technology. It was found that the estimated first-degree regression equation with the interaction gave a very good approximation of the experimental results of the hoop tensile and the compressive strengths of composite pipes within the study domain. Keywords: polymer composite; filament winding; experimental design; thermal analysis; mechani- cal propertie

    Computer-based simulation and validation of robot accuracy improvement method and its verification in robot calibration procedure

    Get PDF
    Algorithm for improving accuracy of six-axes robot is developed and validation method based on computer simulation is implemented. Optimization is used to minimize the distances between nominal and actual positions of the tool. That way, the parameters of the robot are calibrated and using such calibrated parameters, accuracy of the robot is significantly enhanced. Measurement is done using API Radian laser tracker and experimental data is collected on KUKA 480 R3330. For the set of 75 points used for calibration, simulation predicted reduction of the mean of the total displacement error from 1.619 mm to 0.174 mm. After that, the same points were used for verification procedure. Another measurement is performed, using the calibrated parameters and numerically calculated compensation of the machine coordinates of the robot. The mean of total displacement error was 0.293 mm and that way the correctness of described method is verified

    First results from insemination with sex-sorted semen in dairy heifers in Macedonia

    No full text
    Science has been searching for a long time for a reliable method for controlling the sex of mammalian offspring. Recently, the application of specific modern cellular methodologies has led to the development of a flow cytometric system capable of differentiating and separating living X- and Y-chromosome-bearing sperm cells in amounts suitable for AI and therefore, commercialization of this sexing technology. The aim of this work was to present the first results of heifers that introduce bovine AI with sex sorted semen, for the first time in Macedonia. Insemination with sex sorted cryopreserved semen (2x106 spermatozoa per dose) imported from the USA was done at two dairy farms in ZK Pelagonija. In total, 74 heifers (Holstein Friesian) were inseminated. Inseminations were carried out in a timely manner following a modified OvSynch protocol. During the insemination, the sperm was deposited into the uterine horn ipsi lateral to the ovary where a follicle larger than 1.6 cm was detected by means of transrectal ultrasound examination. Pregnancy was checked by ultrasound on day 30 after the insemination. Overall, the average pregnancy rate in both farms was 43,24% (40,54% and 45,95%, for farm 1 and farm 2, respectively). All pregnant heifers delivered their calves following a normal gestation length (274,3 days in average) and of the 32 born calves, 30 (93,75%) were female. In conclusion, since the first results from inseminations with sex-sorted semen in dairy heifers in Macedonia are very promising, the introduction of this technique may bring much benefit to the local dairy sector. Average pregnancy rate seems similar with results obtained following β€˜regular’ inseminations, notwithstanding the relatively low number of spermatozoa per insemination dose. Due to the latter, we however recommend inseminations only to be carried out by experienced technicians followinga TAI protocol and ultrasound examinations of the ovaries prior to insemination

    Effect of Process Parameters on Thermal and Mechanical Properties of Filament Wound Polymer-Based Composite Pipes

    Get PDF
    The aim of this study was to investigate the mechanical and thermal properties of composite pipes based on epoxy resin and glass fibers produced by filament winding (FW) technology. Epoxy resins are widely used polymers in FW composite structures. The thermal characterization of the neat epoxy resin, curing, and post-curing characteristics for the determination of polymerization and glass transition temperature was performed, which is important for the mechanical properties of polymer composite pipes. In the present work, the applicability of the full factorial experimental design in predicting the hoop tensile and compressive strengths of glass fiber/epoxy resin composite pipes was investigated. The composite pipes in accordance with the 23 full factorial experimental design by using of three parameters and two levels of variation were prepared. The winding speed of the composites was taken to be the first factor, the second was the fiber tension, and the third was winding angle. To approximate the response, i.e., the mechanical properties of the composite pipes within the study domain, the first-order linear model with the interaction was used. The influence of each individual factor to the response function was established, as well as the influence of the interaction of the two and three factors. Additionally, those results were completed with the thermal characterization of the polymer composite pipes. From received results from mechanical and thermal characterization, it was concluded that the properties of composite specimens were highly affected by the analyzed parameters in filament winding technology. It was found that the estimated first-degree regression equation with the interaction gave a very good approximation of the experimental results of the hoop tensile and the compressive strengths of composite pipes within the study domain

    COMPUTER AIDED (FILAMENT WINDING) TAPE PLACEMENT FOR ELBOWS. PRACTICALLY ORIENTATED ALGORITHM

    No full text
    Filament winding is one of the most used automated techniques for manufacturing of composite objects with different open-end or closed-end structures. Mathematical model for covering an elbow mandrel with composite material is considered. The nature of the comprising equations is elaborated in detail. A practically orientated algorithm for filament winding for elbows is formulated and its open-source implementations in Python and MATLAB are presented. The results from the constructed algorithm are presented and discussed. Keywords: filament winding for elbows, tape placement for elbows, practical algorithm, open-source, CAD
    corecore