7 research outputs found
Π Π°Π·Π²ΠΎΡ Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π·Π° Π΄ΠΈΠ·Π°ΡΠ½ Π½Π° ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈ ΠΈ Π°ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ
ΠΡΡΡΠ°ΠΆΡΠ²Π°ΡΠ°ΡΠ° Π²ΠΎ ΡΠ°ΠΌΠΊΠΈΡΠ΅ Π½Π° ΠΎΠ²Π°Π° Π΄ΠΎΠΊΡΠΎΡΡΠΊΠ° Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠ° ΡΠ΅ Π½Π°ΡΠΎΡΠ΅Π½ΠΈ Π½Π° ΡΠ°Π·Π²ΠΎΡ Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡΠΈ Π΄ΠΈΠ·Π°ΡΠ½ΠΈΡΠ°ΡΠ΅ Π½Π° ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈ ΠΈ Π°ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ Π·Π° ΠΏΡΠΈΠΌΠ΅Π½Π° ΠΏΡΠΈ Π½ΠΈΠ²Π½ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²ΠΎ ΡΠΎ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ°ΡΠ° Π·Π° Π½Π°ΠΌΠΎΡΡΠ²Π°ΡΠ΅ Π½Π° Π²Π»Π°ΠΊΠ½Π° (filament winding technology, FW). ΠΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΡΠ°Π»ΠΈ Π½ΡΠ΄Π°Ρ ΡΠ½ΠΈΠΊΠ°ΡΠ½ΠΈ ΠΏΡΠ΅Π΄Π½ΠΎΡΡΠΈ Π²ΠΎ ΠΎΠ΄Π½ΠΎΡ Π½Π° ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π°Π»Π½ΠΈΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΡΠ°Π»ΠΈ ΠΈ ΡΠ΅ ΠΊΠ°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΈΡΠ°Π°Ρ ΡΠΎ ΡΠ΅Π»Π°ΡΠΈΠ²Π½ΠΎ Π²ΠΈΡΠΎΠΊΠΈ ΡΠΎΠΎΠ΄Π½ΠΎΡΠΈ ΡΠ°ΠΊΠΎΡΡ/ΡΠ΅ΠΆΠΈΠ½Π°, ΠΎΠ΄Π»ΠΈΡΠ½ΠΈ ΡΠ΅ΡΠΌΠΈΡΠΊΠΈ ΠΈ Π΅Π»Π΅ΠΊΡΡΠΈΡΠ½ΠΈ ΡΠ²ΠΎΡΡΡΠ²Π°, Π° ΡΠΎΠ° Π³ΠΈ ΠΏΡΠ°Π²Π°Ρ ΠΏΡΠΈΠ²Π»Π΅ΡΠ½ΠΈ Π·Π° ΡΠ°Π·Π»ΠΈΡΠ½ΠΈ ΠΈΠ½Π΄ΡΡΡΡΠΈΠΈ. ΠΠΎΡΠ»Π΅Π΄Π½ΠΈΡΠ΅ Π³ΠΎΠ΄ΠΈΠ½ΠΈ Π·Π½Π°ΡΠ°ΡΠ½ΠΎ Π΅ Π·Π³ΠΎΠ»Π΅ΠΌΠ΅Π½ΠΎ ΠΊΠΎΡΠΈΡΡΠ΅ΡΠ΅ΡΠΎ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΡΠ°Π»ΠΈ ΠΈ ΠΏΠΎΡΡΠΎΠΈ ΠΊΠΎΠ½ΡΠΈΠ½ΡΠΈΡΠ°Π½ΠΎ ΠΏΠΎΠ±Π°ΡΡΠ²Π°ΡΠ΅ ΠΎΠ΄ ΡΡΡΠ°Π½Π° Π½Π° ΠΈΠ½Π΄ΡΡΡΡΠΈΡΠΊΠΈΡΠ΅
ΠΊΠ°ΠΏΠ°ΡΠΈΡΠ΅ΡΠΈ, Π° ΡΠΎΠ° ΡΠ° Π½Π°ΠΌΠ΅ΡΠ½ΡΠ²Π° ΠΏΠΎΡΡΠ΅Π±Π°ΡΠ° Π·Π° ΡΠ°Π·Π²ΠΎΡ Π½Π° ΠΎΠ΄ΠΎΠ±ΡΠ΅Π½ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈ Π·Π° Π΄ΠΈΠ·Π°ΡΠ½ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈΡΠ΅ Π΄Π΅Π»ΠΎΠ²ΠΈ. Π Π°Π·Π²ΠΎΡΠΎΡ Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠ΅ Π²ΠΊΠ»ΡΡΡΠ²Π° ΠΈΡΡΡΠ°ΠΆΡΠ²Π°ΡΠ° ΠΏΠΎΠ²ΡΠ·Π°Π½ΠΈ ΡΠΎ ΡΠ°Π·Π»ΠΈΡΠ½ΠΈ Π²Π»ΠΈΡΠ°ΡΠ΅Π»Π½ΠΈ ΡΠ°ΠΊΡΠΎΡΠΈ, ΠΊΠ°ΠΊΠΎ ΡΠ²ΠΎΡΡΡΠ²Π°ΡΠ° Π½Π° Π°ΡΠ΅ΡΠΈΡΠ°Π»ΠΈΡΠ΅, Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ°ΡΠ°, ΡΡΠ»ΠΎΠ²ΠΈΡΠ΅ Π½Π° ΠΏΡΠΎΡΠ΅ΡΠΈΡΠ°ΡΠ΅, ΡΡΠ»ΠΎΠ²ΠΈΡΠ΅ Π½Π° ΠΎΠΏΡΠΎΠ²Π°ΡΡΠ²Π°ΡΠ΅ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈΠΎΡ Π΄Π΅Π» ΠΈ Π΄ΡΡΠ³ΠΎ.
ΠΠΎ ΡΠ°ΠΌΠΊΠΈΡΠ΅ Π½Π° ΠΎΠ²Π°Π° Π΄ΠΎΠΊΡΠΎΡΡΠΊΠ° Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠ° ΡΠ°Π·Π²ΠΈΠ΅Π½ΠΈ ΠΈ ΠΎΠ΄ΠΎΠ±ΡΠ΅Π½ΠΈ ΡΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π·Π° ΠΏΠ°ΡΠ΅ΠΊΠ° Π½Π° Π²Π»Π°ΠΊΠ½Π° ΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π° Π½Π° ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ° Π·Π° Π½Π°ΠΌΠΎΡΡΠ²Π°ΡΠ΅ Π½Π° Π²Π»Π°ΠΊΠ½Π° Π·Π° Π΄ΠΎΠ±ΠΈΠ²Π°ΡΠ΅ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ. Π’ΠΎΡΠ½ΠΎΡΡΠ° Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠΊΠΈΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΅ ΠΏΠΎΡΠ²ΡΠ΄Π΅Π½Π° ΠΏΡΠ΅ΠΊΡ ΡΠΈΠΌΡΠ»Π°ΡΠΈΠΈ Π½Π° ΠΏΠ°ΡΠ΅ΠΊΠΈΡΠ΅ Π½Π° Π²Π»Π°ΠΊΠ½Π°ΡΠ°
Π²ΡΠ· ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈ ΠΈ Π°ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈ ΡΠΎΡΠΌΠΈ ΠΈ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»Π½ΠΎ ΡΠ΅ΡΡΠΈΡΠ°ΡΠ΅ Π½Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΠΎΡΠΈ. ΠΡΠ΅ΠΊΡ Π°Π½Π°Π»ΠΈΠ·Π° Π½Π° Π΄ΠΎΠ±ΠΈΠ΅Π½ΠΈΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠΈ Π΄ΠΎΠ½Π΅ΡΠ΅Π½ΠΈ ΡΠ΅ Π·Π°ΠΊΠ»ΡΡΠΎΡΠΈ Π·Π° ΠΎΠ΄Π½Π΅ΡΡΠ²Π°ΡΠ΅ΡΠΎ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠΎΡΠΈ ΡΠΏΠΎΡΠ΅Π΄ ΡΠ΅Π΄Π²ΠΈΠ΄Π΅Π½ΠΈΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ. ΠΡΡΡΠ°ΠΆΡΠ²Π°ΡΠ΅ΡΠΎ ΠΈΠΌΠ° Π²Π°ΠΆΠ½Π° ΠΏΡΠΈΠΌΠ΅Π½Π° Π²ΠΎ ΡΠ°Π·Π½ΠΈ ΠΈΠ½Π΄ΡΡΡΡΠΈΠΈ, ΠΊΠ°ΠΊΠΎ Π²ΡΠ΅Π»Π΅Π½ΡΠΊΠ°ΡΠ°, Π²ΠΎΠ·Π΄ΡΡ
ΠΎΠΏΠ»ΠΎΠ²Π½Π°ΡΠ°, Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»ΡΠΊΠ°ΡΠ°, Π²ΠΎΠ΅Π½Π°ΡΠ°,
ΠΏΠΎΠΌΠΎΡΡΠΊΠ°ΡΠ° ΠΈΡΠ½. ΠΊΠ°Π΄Π΅ ΡΡΠΎ ΡΠ΅ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ²Π°Π°Ρ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ ΠΊΠ°ΠΊΠΎ Π½ΠΎΡΠ΅ΡΠΊΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΡΠ°Π»ΠΈ.
ΠΠΎΠΊΡΠΎΡΡΠΊΠ°ΡΠ° Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠ° ΠΏΠΎΡΠ½ΡΠ²Π° ΡΠΎ ΠΏΡΠ΅Π³Π»Π΅Π΄ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΡΠ°Π»ΠΈ, Π½ΠΈΠ²Π½ΠΈΡΠ΅ ΡΠ²ΠΎΡΡΡΠ²Π°, Π²ΠΈΠ΄ΠΎΠ²ΠΈ ΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π°. ΠΡΡΠΎ ΡΠ°ΠΊΠ°, ΠΎΠ±ΡΠ°ΡΠ½Π΅ΡΠ° Π΅ ΠΏΡΠ΅Π΄Π½ΠΎΡΡΠ° ΠΎΠ΄ ΠΊΠΎΡΠΈΡΡΠ΅ΡΠ΅ΡΠΎ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΡΠ°Π»ΠΈ Π²ΠΎ ΠΎΠ΄Π½ΠΎΡ Π½Π° ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π°Π»Π½ΠΈΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΡΠ°Π»ΠΈ Π²ΠΎ ΡΠ°Π·Π½ΠΈ ΠΈΠ½Π΄ΡΡΡΡΠΈΠΈ. ΠΠΎΠ½Π°ΡΠ°ΠΌΡ, ΠΎΠΏΠΈΡΠ°Π½ Π΅ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΡΠΊΠΈΠΎΡ ΠΏΡΠΎΡΠ΅Ρ Π½Π° ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ°ΡΠ° Π·Π° Π½Π°ΠΌΠΎΡΡΠ²Π°ΡΠ΅ ΡΠΎ Π²Π»Π°ΠΊΠ½Π° ΠΈ Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΠ΅ Π·Π° Π΄ΠΈΠ·Π°ΡΠ½ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ
Π΄Π΅Π»ΠΎΠ²ΠΈ.
ΠΡΠ²ΠΈΠΎΡ Π΄Π΅Π» ΠΎΠ΄ Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠ°ΡΠ° Π΅ Π½Π°ΡΠΎΡΠ΅Π½ Π½Π° ΡΠ°Π·Π²ΠΎΡ Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° ΠΏΠ°ΡΠ΅ΠΊΠΈΡΠ΅ Π½Π° Π΄Π²ΠΈΠΆΠ΅ΡΠ΅ Π½Π° Π²Π»Π°ΠΊΠ½Π°ΡΠ° Π²ΠΎ FW ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ°ΡΠ° Π·Π° Π΄ΠΎΠ±ΠΈΠ²Π°ΡΠ΅ Π½Π° ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ, ΠΊΠ°ΠΊΠΎ ΡΠ΅Π²ΠΊΠΈ, ΡΠ΅Π·Π΅ΡΠ²ΠΎΠ°ΡΠΈ ΠΈ ΡΠ». ΠΠ° ΠΏΡΠ΅ΡΠΈΠ·Π½ΠΎ ΠΈ ΡΠΎΡΠ½ΠΎ Π΄ΠΎΠ±ΠΈΠ²Π°ΡΠ΅ Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠ΅ ΡΠ°Π·Π³Π»Π΅Π΄ΡΠ²Π°Π½ Π΅ Π°Π³ΠΎΠ»ΠΎΡ Π½Π° Π½Π°ΠΌΠΎΡΡΠ²Π°ΡΠ΅ Π½Π° Π²Π»Π°ΠΊΠ½Π°ΡΠ° ΠΊΠ°ΠΊΠΎ Π²Π»ΠΈΡΠ°ΡΠ΅Π»Π΅Π½ ΡΠ°ΠΊΡΠΎΡ, Π° ΠΎΡΡΠ°Π½Π°ΡΠΈΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΠ½ΠΈ ΡΠ°ΠΊΡΠΎΡΠΈ ΡΠ΅ Π·Π΅ΠΌΠ΅Π½ΠΈ ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ½ΠΈ ΡΠΏΠΎΡΠ΅Π΄ ΠΈΡΠΊΡΡΡΠ²ΠΎΡΠΎ ΠΎΠ΄ ΠΈΠ½Π΄ΡΡΡΡΠΈΡΠ°ΡΠ° ΠΊΠΎΡΠ° ΡΠ° ΠΏΡΠΈΠΌΠ΅Π½ΡΠ²Π° ΠΎΠ²Π°Π° Π΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ°. ΠΠΎΠΊΡΠ°Ρ Π΄ΠΈΠ·Π°ΡΠ½ Π½Π° ΠΏΠ°ΡΠ΅ΠΊΠ° Π½Π° Π²Π»Π°ΠΊΠ½Π°ΡΠ° Π·Π° Π΄ΠΎΠ±ΠΈΠ²Π°ΡΠ΅ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ, Π½Π°ΠΏΡΠ°Π²Π΅Π½ Π΅ ΠΈ ΡΠ΅Π»ΠΎΡΠ΅Π½ Π΄ΠΈΠ·Π°ΡΠ½ Π½Π° ΡΠ΅Π²ΠΊΠ° Π·Π° Π΄Π° ΡΠ΅ ΠΏΠΎΡΠ²ΡΠ΄ΠΈ ΡΠΎΡΠ½ΠΎΡΡΠ° Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΎΡ ΠΏΡΠ΅ΠΊΡ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»Π½ΠΈ ΡΠ΅ΡΡΠΈΡΠ°ΡΠ°. ΠΡΠ· ΠΎΡΠ½ΠΎΠ²Π° Π½Π° ΡΠ°Π·Π²ΠΈΠ΅Π½ΠΈΡΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π·Π° ΠΏΠ°ΡΠ΅ΠΊΠ° Π½Π° Π²Π»Π°ΠΊΠ½Π° ΠΈ Π΄ΠΈΠ·Π°ΡΠ½ Π½Π° ΡΠ΅Π²ΠΊΠ°, ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈ ΡΠ΅ ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΠΎΡΠΈ (ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ ΡΠ΅Π²ΠΊΠΈ) ΡΠΎ ΡΠ°Π·Π»ΠΈΡΠ½ΠΈ Π°Π³Π»ΠΈ Π½Π° Π½Π°ΠΌΠΎΡΡΠ²Π°ΡΠ΅: 10, 30, 45, 60 ΠΈ 90 ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΠΎΡΠΈ ΡΠΎ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΡΠ° Π½Π° Π°Π³Π»ΠΈΡΠ΅ Π½Π° Π½Π°ΠΌΠΎΡΡΠ²Π°ΡΠ΅. Π‘ΠΈΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΠΎΡΠΈ ΡΠ΅ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠΈΡΠΊΠΈ ΡΠ΅ΡΡΠΈΡΠ°Π½ΠΈ Π·Π° ΡΠ°ΡΠΈΠ½Π°ΡΠ° Π½Π° ΠΈΡΡΠ΅Π³Π½ΡΠ²Π°ΡΠ΅ (hoop tensile strength) Π·Π° ΠΈΡΠΏΠΎΠ»Π½ΡΠ²Π°ΡΠ΅ Π½Π° Π±Π°ΡΠ°ΡΠ°ΡΠ° Π·Π° ΠΊΠ²Π°Π»ΠΈΡΠ΅Ρ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈΡΠ΅ ΡΠ΅Π²ΠΊΠΈ: ΠΎΡΠΏΠΎΡΠ½ΠΎΡΡ Π½Π° Π²ΠΈΡΠΎΠΊ Π²Π½Π°ΡΡΠ΅ΡΠ΅Π½ ΠΏΡΠΈΡΠΈΡΠΎΠΊ. ΠΠ΄ Π΄ΠΎΠ±ΠΈΠ΅Π½ΠΈΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠΈ Π±Π΅ΡΠ΅ Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΎ Π΄Π΅ΠΊΠ° ΠΏΡΠ΅Π΄Π²ΠΈΠ΄Π΅Π½ΠΎΡΠΎ ΠΎΠ΄Π½Π΅ΡΡΠ²Π°ΡΠ΅ Π½Π° ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈΡΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ (ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ ΡΠ΅Π²ΠΊΠΈ) ΡΠΎΠΎΠ΄Π²Π΅ΡΡΠ²ΡΠ²Π° ΡΠΎ ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠΈΡΠ΅ ΠΎΠ΄ ΡΠ΅ΡΡΠΈΡΠ°ΡΠ°ΡΠ° Π½Π° ΡΠ°ΠΊΠ° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠΎΡΠΈ. ΠΡΠ΅ΠΊΡ ΠΎΠ²Π° ΠΈΡΡΡΠ°ΠΆΡΠ²Π°ΡΠ΅ ΡΠ°Π·Π²ΠΈΠ΅Π½ΠΈ ΡΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π·Π° Π΄ΠΈΠ·Π°ΡΠ½ΠΎΡ Π½Π° ΠΏΠ°ΡΠ΅ΠΊΠ° Π½Π° Π²Π»Π°ΠΊΠ½Π° Π²ΡΠ· ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈ ΠΏΠΎΠ²ΡΡΠΈΠ½ΠΈ, ΡΡΠΎ ΡΠ΅Π·ΡΠ»ΡΠΈΡΠ° Π²ΠΎ ΠΎΠΏΡΠΈΠΌΠΈΠ·ΠΈΡΠ°Π½ΠΎ ΠΈ ΠΏΡΠ΅ΡΠΈΠ·Π½ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²ΠΎ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ ΡΠ΅Π²ΠΊΠΈ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»Π½ΠΎ Π³Π΅Π½Π΅ΡΠΈΡΠ°ΡΠ΅ Π½Π° ΠΎΡΠΏΠ°Π΄Π΅Π½ ΠΌΠ°ΡΠ΅ΡΠΈΡΠ°Π».
ΠΡΠΎΡΠΈΠΎΡ Π΄Π΅Π» ΠΎΠ΄ Π΄ΠΎΠΊΡΠΎΡΡΠΊΠ°ΡΠ° Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠ° Π΅ Π½Π°ΡΠΎΡΠ΅Π½ Π½Π° ΠΈΡΡΡΠ°ΠΆΡΠ²Π°ΡΠ° Π·Π° ΠΏΠΎΠ΄ΠΎΠ±ΡΡΠ²Π°ΡΠ΅ ΠΈ ΡΠ°Π·Π²ΠΎΡ Π½Π° Π½ΠΎΠ²ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈ Π·Π° Π΄ΠΈΠ·Π°ΡΠ½ Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π» Π·Π° ΠΏΠ°ΡΠ΅ΠΊΠ° Π½Π° Π²Π»Π°ΠΊΠ½Π° Π·Π° Π΄ΠΎΠ±ΠΈΠ²Π°ΡΠ΅ Π½Π° ΠΏΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈ Π°ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ. ΠΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»Π½ΠΎ, Π½Π°ΠΏΡΠ°Π²Π΅Π½ΠΈ ΡΠ΅ ΠΈ Π³ΡΠ°ΡΠΈΡΠΊΠΈ ΡΠΈΠΌΡΠ»Π°ΡΠΈΠΈ Π½Π° Π΄ΠΈΠ·Π°ΡΠ½ΠΈΡΠ΅. ΠΡΠ΅Π΄Π²ΠΈΠ΄ΡΠ²Π°ΡΠ΅ΡΠΎ Π½Π° ΠΎΠ΄Π½Π΅ΡΡΠ²Π°ΡΠ΅ΡΠΎ Π½Π° Π°ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈΡΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ ΡΠ΅Π²ΠΊΠΈ Π΅ Π½Π°ΠΏΡΠ°Π²Π΅Π½ΠΎ Π²ΡΠ· ΠΎΡΠ½ΠΎΠ²Π° Π½Π° Π·Π°ΠΊΠ»ΡΡΠΎΡΠΈΡΠ΅ ΠΎΠ΄ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»Π½ΠΈΡΠ΅ ΡΠ΅ΡΡΠΈΡΠ°ΡΠ° ΠΎΠ΄ ΠΏΡΠ²ΠΈΠΎΡ Π΄Π΅Π» Π·Π° ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ ΡΠ΅Π²ΠΊΠΈ ΠΈ ΡΠΎ Π»ΠΎΠ³ΠΈΡΠΊΠΈ ΠΏΡΠ΅ΡΠ»ΠΈΠΊΡΠ²Π°ΡΠ° Π½Π° ΡΠΎΠ° ΠΎΠ΄Π½Π΅ΡΡΠ²Π°ΡΠ΅ Π²ΡΠ· ΠΏΠΎΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡΠ΅ Π°ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ.
ΠΠΎΠΊΡΠΎΡΡΠΊΠ° Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠ° Π΄Π°Π²Π° Π·Π½Π°ΡΠ°ΡΠ½ΠΈ ΡΠΎΠ·Π½Π°Π½ΠΈΡΠ° Π·Π° ΠΏΡΠ΅ΡΠΈΠ·Π½ΠΎ Π½Π°ΠΌΠΎΡΡΠ²Π°ΡΠ΅ Π½Π° Π²Π»Π°ΠΊΠ½Π°ΡΠ° ΠΏΡΠ΅ΠΊΡ ΡΠ°Π·Π²ΠΈΠ΅Π½ΠΈΡΠ΅ ΠΈ ΠΏΠΎΠ΄ΠΎΠ±ΡΠ΅Π½ΠΈΡΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π·Π° Π΄ΠΎΠ±ΠΈΠ²Π°ΡΠ΅ Π½Π° ΠΊΠ²Π°Π»ΠΈΡΠ΅ΡΠ½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΠΈ Π΄Π΅Π»ΠΎΠ²ΠΈ Π·Π° ΡΠΏΠΎΡΡΠ΅Π±Π° Π²ΠΎ ΡΠ°Π·Π»ΠΈΡΠ½ΠΈ ΠΈΠ½Π΄ΡΡΡΡΠΈΠΈ.
ΠΠ»ΡΡΠ½ΠΈ Π·Π±ΠΎΡΠΎΠ²ΠΈ: ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ, Π΄ΠΈΠ·Π°ΡΠ½ Π½Π° ΠΏΠ°ΡΠ΅ΠΊΠ°, ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈ,
Π°ΡΠΈΠΌΠ΅ΡΡΠΈΡΠ½ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ
Computer aided (filament winding) tape placement for elbows. Practically orientated algorithm
Filament winding is one of the most used automated techniques for manufacturing of composite
objects with different open-end or closed-end structures. Mathematical model for covering an elbow
mandrel with composite material is considered. The nature of the comprising equations is elaborated in
detail. A practically orientated algorithm for filament winding for elbows is formulated and its open-source
implementations in Python and MATLAB are presented. The results from the constructed algorithm are
presented and discussed.
Keywords: filament winding for elbows, tape placement for elbows, practical algorithm, open-source, CAD
Effect of Process Parameters on Thermal and Mechanical Properties of Filament Wound Polymer-Based Composite Pipes
Abstract: The aim of this study was to investigate the mechanical and thermal properties of composite
pipes based on epoxy resin and glass fibers produced by filament winding (FW) technology. Epoxy
resins are widely used polymers in FW composite structures. The thermal characterization of the
neat epoxy resin, curing, and post-curing characteristics for the determination of polymerization and
glass transition temperature was performed, which is important for the mechanical properties of
polymer composite pipes. In the present work, the applicability of the full factorial experimental
design in predicting the hoop tensile and compressive strengths of glass fiber/epoxy resin composite
pipes was investigated. The composite pipes in accordance with the 23 full factorial experimental
design by using of three parameters and two levels of variation were prepared. The winding speed
of the composites was taken to be the first factor, the second was the fiber tension, and the third was
winding angle. To approximate the response, i.e., the mechanical properties of the composite pipes
within the study domain, the first-order linear model with the interaction was used. The influence
of each individual factor to the response function was established, as well as the influence of the
interaction of the two and three factors. Additionally, those results were completed with the thermal
characterization of the polymer composite pipes. From received results from mechanical and thermal
characterization, it was concluded that the properties of composite specimens were highly affected by
the analyzed parameters in filament winding technology. It was found that the estimated first-degree
regression equation with the interaction gave a very good approximation of the experimental results
of the hoop tensile and the compressive strengths of composite pipes within the study domain.
Keywords: polymer composite; filament winding; experimental design; thermal analysis; mechani-
cal propertie
Computer-based simulation and validation of robot accuracy improvement method and its verification in robot calibration procedure
Algorithm for improving accuracy of six-axes robot
is developed and validation method based on computer
simulation is implemented. Optimization is used to minimize the
distances between nominal and actual positions of the tool. That
way, the parameters of the robot are calibrated and using such
calibrated parameters, accuracy of the robot is significantly
enhanced.
Measurement is done using API Radian laser tracker and
experimental data is collected on KUKA 480 R3330. For the set
of 75 points used for calibration, simulation predicted reduction
of the mean of the total displacement error from 1.619 mm to
0.174 mm. After that, the same points were used for verification
procedure. Another measurement is performed, using the
calibrated parameters and numerically calculated compensation
of the machine coordinates of the robot. The mean of total
displacement error was 0.293 mm and that way the correctness of
described method is verified
First results from insemination with sex-sorted semen in dairy heifers in Macedonia
Science has been searching for a long time for a reliable method for controlling the sex of mammalian offspring. Recently, the application of specific modern cellular methodologies has led to the development of a flow cytometric system capable of differentiating and separating living X- and Y-chromosome-bearing sperm cells in amounts suitable for AI and therefore, commercialization of this sexing technology. The aim of this work was to present the first results of heifers that introduce bovine AI with sex sorted semen, for the first time in Macedonia. Insemination with sex sorted cryopreserved semen (2x106 spermatozoa per dose) imported from the USA was done at two dairy farms in ZK Pelagonija. In total, 74 heifers (Holstein Friesian) were inseminated. Inseminations were carried out in a timely manner following a modified OvSynch protocol. During the insemination, the sperm was deposited into the uterine horn ipsi lateral to the ovary where a follicle larger than 1.6 cm was detected by means of transrectal ultrasound examination. Pregnancy was checked by ultrasound on day 30 after the insemination. Overall, the average pregnancy rate in both farms was 43,24% (40,54% and 45,95%, for farm 1 and farm 2, respectively). All pregnant heifers delivered their calves following a normal gestation length (274,3 days in average) and of the 32 born calves, 30 (93,75%) were female. In conclusion, since the first results from inseminations with sex-sorted semen in dairy heifers in Macedonia are very promising, the introduction of this technique may bring much benefit to the local dairy sector. Average pregnancy rate seems similar with results obtained following βregularβ inseminations, notwithstanding the relatively low number of spermatozoa per insemination dose. Due to the latter, we however recommend inseminations only to be carried out by experienced technicians followinga TAI protocol and ultrasound examinations of the ovaries prior to insemination
Effect of Process Parameters on Thermal and Mechanical Properties of Filament Wound Polymer-Based Composite Pipes
The aim of this study was to investigate the mechanical and thermal properties of composite pipes based on epoxy resin and glass fibers produced by filament winding (FW) technology. Epoxy resins are widely used polymers in FW composite structures. The thermal characterization of the neat epoxy resin, curing, and post-curing characteristics for the determination of polymerization and glass transition temperature was performed, which is important for the mechanical properties of polymer composite pipes. In the present work, the applicability of the full factorial experimental design in predicting the hoop tensile and compressive strengths of glass fiber/epoxy resin composite pipes was investigated. The composite pipes in accordance with the 23 full factorial experimental design by using of three parameters and two levels of variation were prepared. The winding speed of the composites was taken to be the first factor, the second was the fiber tension, and the third was winding angle. To approximate the response, i.e., the mechanical properties of the composite pipes within the study domain, the first-order linear model with the interaction was used. The influence of each individual factor to the response function was established, as well as the influence of the interaction of the two and three factors. Additionally, those results were completed with the thermal characterization of the polymer composite pipes. From received results from mechanical and thermal characterization, it was concluded that the properties of composite specimens were highly affected by the analyzed parameters in filament winding technology. It was found that the estimated first-degree regression equation with the interaction gave a very good approximation of the experimental results of the hoop tensile and the compressive strengths of composite pipes within the study domain
COMPUTER AIDED (FILAMENT WINDING) TAPE PLACEMENT FOR ELBOWS. PRACTICALLY ORIENTATED ALGORITHM
Filament winding is one of the most used automated techniques for manufacturing of composite objects with different open-end or closed-end structures. Mathematical model for covering an elbow mandrel with composite material is considered. The nature of the comprising equations is elaborated in detail. A practically orientated algorithm for filament winding for elbows is formulated and its open-source implementations in Python and MATLAB are presented. The results from the constructed algorithm are presented and discussed.
Keywords: filament winding for elbows, tape placement for elbows, practical algorithm, open-source, CAD