1,310 research outputs found
Thermal histories of the samples of two KOSI comet nucleus simulation experiments
Temperatures recorded during two KOSI comet nucleus simulation experiments strongly suggest that heat transport by vapor flow into the interior of the sample is very important. Two comet nucleus simulation experiments have been done by the KOSI team in a big space simulator. The thermal evolution of the sample during insolation and the results of simplified thermal evolution calculations are discussed. The observed thermal histories cannot be explained by a simple model with heat transferred by heat conduction at a constant conductivity, so a coupled heat and mass transfer problem was considered. The porous ice matrix was assumed to have a constant thermal conductivity and to be in thermal equilibrium with vapor in the pores, the internal pressure being the vapor pressure. The vapor was modelled as an ideal gas because, at the temperatures relevant to the problem, the mean free path length of the vapor molecules is large in comparison with the pore dimensions. The heat capacity at constant volume per unit mass of the two phase mixture was also assumed constant. The vapor was allowed to flow and transfer heat in response to an internal pressure gradient
Modifications of comet materials by the sublimation process: Results from simulation experiments
An active comet like comet Halley loses by sublimation a surface layer of the order of 1 m thickness per perihelion passage. In situ measurements show that water ice is the main constituent which contributes to the gas emission although even more volatile species (CO, NH3, CH4, CO2 etc.) have been identified. Dust particles which were embedded in the ices are carried by the sublimating gases. Measurements of the chemical composition of cometary grains indicate that they are composed of silicates of approximate chondritic composition and refractory carbonaceous material. Comet simulation experiments show that significant modifications of cometary materials occur due to sublimation process in near surface layers which have to be taken into account in order to derive the original state of the material
Invariant variational principle for Hamiltonian mechanics
It is shown that the action for Hamiltonian equations of motion can be
brought into invariant symplectic form. In other words, it can be formulated
directly in terms of the symplectic structure without any need to
choose some 1-form , such that , which is not unique
and does not even generally exist in a global sense.Comment: final version; to appear in J.Phys.A; 17 pages, 2 figure
Electronic Spin Transport in Dual-Gated Bilayer Graphene
The elimination of extrinsic sources of spin relaxation is key in realizing
the exceptional intrinsic spin transport performance of graphene. Towards this,
we study charge and spin transport in bilayer graphene-based spin valve devices
fabricated in a new device architecture which allows us to make a comparative
study by separately investigating the roles of substrate and polymer residues
on spin relaxation. First, the comparison between spin valves fabricated on
SiO2 and BN substrates suggests that substrate-related charged impurities,
phonons and roughness do not limit the spin transport in current devices. Next,
the observation of a 5-fold enhancement in spin relaxation time in the
encapsulated device highlights the significance of polymer residues on spin
relaxation. We observe a spin relaxation length of ~ 10 um in the encapsulated
bilayer with a charge mobility of 24000 cm2/Vs. The carrier density dependence
of spin relaxation time has two distinct regimes; n<4 x 1012 cm-2, where spin
relaxation time decreases monotonically as carrier concentration increases, and
n>4 x 1012 cm-2, where spin relaxation time exhibits a sudden increase. The
sudden increase in the spin relaxation time with no corresponding signature in
the charge transport suggests the presence of a magnetic resonance close to the
charge neutrality point. We also demonstrate, for the first time, spin
transport across bipolar p-n junctions in our dual-gated device architecture
that fully integrates a sequence of encapsulated regions in its design. At low
temperatures, strong suppression of the spin signal was observed while a
transport gap was induced, which is interpreted as a novel manifestation of
impedance mismatch within the spin channel
Patterns of change in subjective cognitive complaints are associated with cognitive decline and dementia risk: Findings from the Sydney Memory and Ageing Study
Background
Subjective cognitive complaints (SCCs) are now an established risk factor for dementia, however, little is known about whether changing patterns in SCCs over time are associated with cognitive decline and dementia risk. We examine the trajectory of SCCs over a 6‐year period to determine whether intraindividual patterns of reporting SCCs over time is related to cognitive decline and incident dementia.
Method
Participants were 1037 older adults without dementia (M
age = 78.65 years; 55% females) from the Sydney Memory and Ageing Study who were followed‐up biennially. Global cognition was measured using a comprehensive neuropsychological battery, and clinical diagnoses were made by an expert consensus panel. SCCs were obtained as participants’ response to a single question concerning their subjective report of memory decline. Patterns of SCCs over time were modelled by conducting categorical latent growth curve analysis using the logit transformation (Figure 1). We examined the associations between average level of SCC likelihood and change in SCC likelihood, with global cognition over six years using latent growth curve analysis, and with risk of incident dementia over 10 years using Cox regression.
Result
In this community‐dwelling older adult sample, there was an annual 10% increase in the odds of reporting SCCs (Figure 2). After controlling for demographics, depression, and personality, results revealed a negative longitudinal association between the slope of SCCs and the slope of global cognition scores, such that participants with an increasing propensity of reporting SCCs over time also showed a steeper rate of decline in global cognition (Figure 4). Cox regression revealed an association between increased SCCs and incident dementia risk (Table 1). That is, participants with an increasing propensity of reporting SCCs over time are also at greater risk for developing dementia (Figure 5).
Conclusion
This is the first study to use latent growth curve analysis to examine patterns of change in SCCs overtime. Traditionally, studies examining SCCs longitudinally categorise people as ‘stable’ versus ‘not stable’, however, important information may be lost this way. Understanding patterns of change in SCC reporting over time has significant potential to identify individuals at greater risk of cognitive decline and incident dementia
The Pauli equation with complex boundary conditions
We consider one-dimensional Pauli Hamiltonians in a bounded interval with
possibly non-self-adjoint Robin-type boundary conditions. We study the
influence of the spin-magnetic interaction on the interplay between the type of
boundary conditions and the spectrum. A special attention is paid to
PT-symmetric boundary conditions with the physical choice of the time-reversal
operator T.Comment: 16 pages, 4 figure
Risk factors for falls in community-dwelling older people with mild cognitive impairment: a prospective one-year study
Objective: Mild cognitive impairment (MCI) is considered an intermediate stage between normal cognitive function and dementia. Fall risk is increased in this group, but there is limited literature exploring specific fall risk factors that may be addressed in fall prevention strategies. The aim of this study was to examine risk factors for falls in older people with MCI, focusing on cognitive, psychological and physical factors. Methods: Participants (n = 266, 45% women) were community-dwelling older people aged 70–90 years who met the criteria for MCI. Cognitive, psychological, sensorimotor and physical assessments, physical activity levels, medication use, general health and disability were ascertained at baseline. Falls were monitored prospectively for 12 months. Results: During follow-up, 106 (40%) participants reported one or more falls. Poorer visual contrast sensitivity, increased postural sway, lower levels of weekly walking activity, higher levels of depressive symptoms and psychotropic medication use were significantly associated with faller status (≥1 falls) in univariable analyses. Of these factors, poor visual contrast sensitivity, increased postural sway and psychotropic medication use were found to be significant independent predictors of falls in multivariable analysis while controlling for age and sex. No measures of cognitive function were associated with falls. Conclusions: Poor visual contrast sensitivity, impaired balance and psychotropic medication use predicted falls in community-dwelling people with MCI. These risk factors may be amenable to intervention, so these factors could be carefully considered in fall prevention programs for this population
Bilateral Weighted Adaptive Local Similarity Measure for Registration in Neurosurgery
Image-guided neurosurgery involves the display of MRI-based preoperative plans in an intraoperative reference frame. Interventional MRI (iMRI) can serve as a reference for non-rigid registration based propagation of preoperative MRI. Structural MRI images exhibit spatially varying intensity relationships, which can be captured by a local similarity measure such as the local normalized correlation coefficient (LNCC). However, LNCC weights local neighborhoods using a static spatial kernel and includes voxels from beyond a tissue or resection boundary in a neighborhood centered inside the boundary. We modify LNCC to use locally adaptive weighting inspired by bilateral filtering and evaluate it extensively in a numerical phantom study, a clinical iMRI study and a segmentation propagation study. The modified measure enables increased registration accuracy near tissue and resection boundaries
Differential Gene Expression in High- and Low-Active Inbred Mice
Numerous candidate genes have been suggested in the recent literature with proposed roles in regulation of voluntary physical activity, with little evidence of these genes' functional roles. This study compared the haplotype structure and expression profile in skeletal muscle and brain of inherently high- (C57L/J) and low- (C3H/HeJ) active mice. Expression of nine candidate genes [Actn2, Actn3, Casq1, Drd2, Lepr, Mc4r, Mstn, Papss2, and Glut4 (a.k.a. Slc2a4)] was evaluated via RT-qPCR. SNPs were observed in regions of Actn2, Casq1, Drd2, Lepr, and Papss2; however, no SNPs were located in coding sequences or associated with any known regulatory sequences. In mice exposed to a running wheel, Casq1 (P = 0.0003) and Mstn (P = 0.002) transcript levels in the soleus were higher in the low-active mice. However, when these genes were evaluated in naïve animals, differential expression was not observed, demonstrating a training effect. Among naïve mice, no genes in either tissue exhibited differential expression between strains. Considering that no obvious SNP mechanisms were determined or differential expression was observed, our results indicate that genomic structural variation or gene expression data alone is not adequate to establish any of these genes' candidacy or causality in relation to regulation of physical activity
- …