1 research outputs found

    Sensitivity towards HDAC inhibition is associated with RTK/MAPK pathway activation in gastric cancer

    No full text
    Gastric cancer ranks the fifth most common and third leading cause of cancer-related deaths worldwide. Alterations in the RTK/MAPK, WNT, cell adhesion, TP53, TGF beta, NOTCH, and NF kappa B signaling pathways could be identified as main oncogenic drivers. A combination of altered pathways can be associated with molecular subtypes of gastric cancer. In order to generate model systems to study the impact of different pathway alterations in a defined genetic background, we generated three murine organoid models: a RAS-activated (Kras(G12D), Tp53(R172H)), a WNT-activated (Apc(fl/fl), Tp53(R172H)), and a diffuse (Cdh1(fl/fl), Apc(fl/fl)) model. These organoid models were morphologically and phenotypically diverse, differed in proteome expression signatures and possessed individual drug sensitivities. A differential vulnerability to RTK/MAPK pathway interference based on the different mitogenic drivers and according to the level of dependence on the pathway could be uncovered. Furthermore, an association between RTK/MAPK pathway activity and susceptibility to HDAC inhibition was observed. This finding was further validated in patient-derived organoids from gastric adenocarcinoma, thus identifying a novel treatment approach for RTK/MAPK pathway altered gastric cancer patients.11Nsciescopu
    corecore