3 research outputs found

    Automated sulfur-[18F]fluoride exchange radiolabelling of a prostate specific membrane antigen (PSMA) targeted ligand using the GE FASTlab™ cassette-based platform

    Get PDF
    Sulfur-[18F]fluoride exchange radiochemistry is a rapid and convenient method for incorporating fluorine-18 into biologically active molecules. We report a fully automated radiolabelling procedure for the synthesis of a [18F]SO3F-bearing prostate specific membrane antigen (PSMA) targeted ligand ([18F]5) using the GE FASTLab™ cassette-based platform in a 25.0 ± 2.6% radiochemical yield (decay corrected). Uptake in vitro and in vivo correlated with PSMA expression, and the radioligand exhibited favourable biodistribution and pharmacokinetic profiles

    [18F]Fluorothymidine Uptake in the Porcine Pancreatic Elastase-Induced Model of Abdominal Aortic Aneurysm

    No full text
    The porcine pancreatic elastase (PPE) model is a common preclinical model of abdominal aortic aneurysms (AAA). Some notable characteristics of this model include the low aortic rupture rate, non-progressive disease course, and infra-renal AAA formation. Enhanced [18F]fluorothymidine ([18F]FLT) uptake on positron emission tomography/computed tomography (PET/CT) has previously been reported in the angiotensin II-induced murine model of AAA. Here, we report our preliminary findings of investigating [18F]FLT uptake in the PPE murine model of AAA. [18F]FLT uptake was found to be substantially increased in the abdominal areas recovering from the surgery, whilst it was not found to be significantly increased within the PPE-induced AAA, as confirmed using in vivo PET/CT and ex vivo whole-organ gamma counting (PPE, n = 7; controls, n = 3). This finding suggests that the [18F]FLT may not be an appropriate radiotracer for this specific AAA model, and further studies with larger sample sizes are warranted to elucidate the pathobiology contributing to the reduced uptake of [18F]FLT in this model

    Exploratory Analysis of Serial 18F-fluciclovine PET-CT and Multiparametric MRI during Chemoradiation for Glioblastoma

    Get PDF
    Anti-1-amino-3-18fluorine-fluorocyclobutane-1-carboxylic acid (18F-fluciclovine) positron emission tomography (PET) shows preferential glioma uptake but there is little data on how uptake correlates with post-contrast T1-weighted (Gd-T1) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) activity during adjuvant treatment. This pilot study aimed to compare 18F-fluciclovine PET, DCE-MRI and Gd-T1 in patients undergoing chemoradiotherapy for glioblastoma (GBM), and in a parallel pre-clinical GBM model, to investigate correlation between 18F-fluciclovine uptake, MRI findings, and tumour biology. 18F-fluciclovine-PET-computed tomography (PET-CT) and MRI including DCE-MRI were acquired before, during and after adjuvant chemoradiotherapy (60 Gy in 30 fractions with temozolomide) in GBM patients. MRI volumes were manually contoured; PET volumes were defined using semi-automatic thresholding. The similarity of the PET and DCE-MRI volumes outside the Gd-T1 volume boundary was measured using the Dice similarity coefficient (DSC). CT-2A tumour-bearing mice underwent MRI and 18F-fluciclovine PET-CT. Post-mortem mice brains underwent immunohistochemistry staining for ASCT2 (amino acid transporter), nestin (stemness) and Ki-67 (proliferation) to assess for biologically active tumour. 6 patients were recruited (GBM 1–6) and grouped according to overall survival (OS)—short survival (GBM-SS, median OS 249 days) and long survival (GBM-LS, median 903 days). For GBM-SS, PET tumour volumes were greater than DCE-MRI, in turn greater than Gd-T1. For GBM-LS, Gd-T1 and DCE-MRI were greater than PET. Tumour-specific 18F-fluciclovine uptake on pre-clinical PET-CT corresponded to immunostaining for Ki-67, nestin and ASCT2. Results suggest volumes of 18F-fluciclovine-PET activity beyond that depicted by DCE-MRI and Gd-T1 are associated with poorer prognosis in patients undergoing chemoradiotherapy for GBM. The pre-clinical model confirmed 18F-fluciclovine uptake reflected biologically active tumour
    corecore