28,307 research outputs found

    Current Induced Excitations in Cu/Co/Cu Single Ferromagnetic Layer Nanopillars

    Full text link
    Current-induced magnetic excitations in Cu/Co/Cu single layer nanopillars (~50 nm in diameter) have been studied experimentally as a function of Co layer thickness at low temperatures for large applied fields perpendicular to the layers. For asymmetric junctions current induced excitations are observed at high current densities for only one polarity of the current and are absent at the same current densities in symmetric junctions. These observations confirm recent predictions of spin-transfer torque induced spin wave excitations in single layer junctions with a strong asymmetry in the spin accumulation in the leads.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Resonance Production on Nuclei at High Energies: Nuclear-Medium Effects and Space-Time Picture

    Get PDF
    The influence of nuclear matter on the properties of coherently produced resonances is discussed. It is shown that, in general, the mass distribution of resonance decay products has a two-component structure corresponding to decay outside and inside the nucleus. The first (narrow) component of the amplitude has a Breit-Wigner form determined by the vacuum values of mass and width of the resonance. The second (broad) component corresponds to interactions of the resonance with the nuclear medium. It can be also described by a Breit-Wigner shape with parameters depending e.g. on the nuclear density and on the cross section of the resonance-nucleon interaction. The resonance production is examined both at intermediate energies, where interactions with the nucleus can be considered as a series of successive local rescatterings, and at high energies, E>EcritE>E_{crit}, where a change of interaction picture occurs. This change of mechanisms of the interactions with the nucleus is typical for the description within the Regge theory approach and is connected with the nonlocal nature of the reggeon interaction.Comment: 22 pages LaTeX, 1 Postscript file containing 7 figures; addition in beginning of Ch. 2; Nucl. Phys. A, to be publishe

    In Vivo Evolution of Butane Oxidation by Terminal Alkane Hydroxylases AlkB and CYP153A6

    Get PDF
    Enzymes of the AlkB and CYP153 families catalyze the first step in the catabolism of medium-chain-length alkanes, selective oxidation of the alkane to the 1-alkanol, and enable their host organisms to utilize alkanes as carbon sources. Small, gaseous alkanes, however, are converted to alkanols by evolutionarily unrelated methane monooxygenases. Propane and butane can be oxidized by CYP enzymes engineered in the laboratory, but these produce predominantly the 2-alkanols. Here we report the in vivo-directed evolution of two medium-chain-length terminal alkane hydroxylases, the integral membrane di-iron enzyme AlkB from Pseudomonas putida GPo1 and the class II-type soluble CYP153A6 from Mycobacterium sp. strain HXN-1500, to enhance their activity on small alkanes. We established a P. putida evolution system that enables selection for terminal alkane hydroxylase activity and used it to select propane- and butane-oxidizing enzymes based on enhanced growth complementation of an adapted P. putida GPo12(pGEc47{Delta}B) strain. The resulting enzymes exhibited higher rates of 1-butanol production from butane and maintained their preference for terminal hydroxylation. This in vivo evolution system could be useful for directed evolution of enzymes that function efficiently to hydroxylate small alkanes in engineered hosts

    A Renormalization Group for Hamiltonians: Numerical Results

    Full text link
    We describe a renormalization group transformation that is related to the breakup of golden invariant tori in Hamiltonian systems with two degrees of freedom. This transformation applies to a large class of Hamiltonians, is conceptually simple, and allows for accurate numerical computations. In a numerical implementation, we find a nontrivial fixed point and determine the corresponding critical index and scaling. Our computed values for various universal constants are in good agreement with existing data for area-preserving maps. We also discuss the flow associated with the nontrivial fixed point.Comment: 11 Pages, 2 Figures. For future updates, check ftp://ftp.ma.utexas.edu/pub/papers/koch

    Observation of Coulomb-Assisted Dipole-Forbidden Intraexciton Transitions in Semiconductors

    Get PDF
    We use terahertz pulses to induce resonant transitions between the eigenstates of optically generated exciton populations in a high-quality semiconductor quantum-well sample. Monitoring the excitonic photoluminescence, we observe transient quenching of the 1s1s exciton emission, which we attribute to the terahertz-induced 1s1s-to-2p2p excitation. Simultaneously, a pronounced enhancement of the 2s2s-exciton emission is observed, despite the 1s1s-to-2s2s transition being dipole forbidden. A microscopic many-body theory explains the experimental observations as a Coulomb-scattering mixing of the 2ss and 2pp states, yielding an effective terahertz transition between the 1ss and 2ss populations.Comment: 5 pages, 3 figure

    Total destruction of invariant tori for the generalized Frenkel-Kontorova model

    Full text link
    We consider generalized Frenkel-Kontorova models on higher dimensional lattices. We show that the invariant tori which are parameterized by continuous hull functions can be destroyed by small perturbations in the CrC^r topology with r<1r<1

    Robustness of high-fidelity Rydberg gates with single-site addressability

    Get PDF
    Controlled phase (CPHASE) gates can in principle be realized with trapped neutral atoms by making use of the Rydberg blockade. Achieving the ultra-high fidelities required for quantum computation with such Rydberg gates is however compromised by experimental inaccuracies in pulse amplitudes and timings, as well as by stray fields that cause fluctuations of the Rydberg levels. We report here a comparative study of analytic and numerical pulse sequences for the Rydberg CPHASE gate that specifically examines the robustness of the gate fidelity with respect to such experimental perturbations. Analytical pulse sequences of both simultaneous and stimulated Raman adiabatic passage (STIRAP) are found to be at best moderately robust under these perturbations. In contrast, optimal control theory is seen to allow generation of numerical pulses that are inherently robust within a predefined tolerance window. The resulting numerical pulse shapes display simple modulation patterns and their spectra contain only one additional frequency beyond the basic resonant Rydberg gate frequencies. Pulses of such low complexity should be experimentally feasible, allowing gate fidelities of order 99.90 - 99.99% to be achievable under realistic experimental conditions.Comment: 12 pages, 14 figure

    Inflammatory and Angiogenic Protein Detection in the Human Vitreous: Cytometric Bead Assay

    Get PDF
    Introduction. To evaluate clinical feasibility and reproducibility of cytometric bead assay (CBA) in nondiluted vitreous samples of patients with age-related macular degeneration (ARMD), diabetic macular edema (DME), and central retinal vein occlusion (CRVO). Methods. Twelve patients from a single clinics day qualified for intravitreal injections (ARMD n = 6, DME n = 3, CRVO n = 3) and underwent a combination treatment including a single-site 23 gauge core vitrectomy which yielded a volume of 0.6 mL undiluted vitreous per patient. Interleukin-6 (IL-6), vascular endothelial growth factor isoform A (VEGF-A), and monocyte chemo-attractant protein-1 (MCP-1) were assessed directly from 0.3 mL at the same day (fresh samples). To assess the reproducibility 0.3 ml were frozen for 60 days at −80°, on which the CBA was repeated (frozen samples). Results. In the fresh samples IL-6 was highest in CRVO (median IL-6 55.8 pg/mL) > DME (50.6) > ARMD (3.1). Highest VEGF was measured in CRVO (447.4) > DME (3.9) > ARMD (2.0). MCP-1 was highest in CRVO (595.7) > AMD (530.8) > DME (178). The CBA reproducibility after frozen storage was examined to be most accurate for MCP1 (P = 0.91) > VEGF (P = 0.68) > IL-6 (P = 0.49). Conclusions. CBA is an innovative, fast determining, and reliable technology to analyze proteins in fluids, like the undiluted vitreous, which is important to better understand ocular pathophysiology and pharmacology. There is no influence of intermittent storage at −80° for the reproducibility of the CBA

    Pion photoproduction on nucleons in a covariant hadron-exchange model

    Full text link
    We present a relativistic dynamical model of pion photoproduction on the nucleon in the resonance region. It offers several advances over the existing approaches. The model is obtained by extending our πN\pi N-scattering description to the electromagnetic channels. The resulting photopion amplitude is thus unitary in the πN\pi N, \ga N channel space, Watson's theorem is exactly satisfied. At this stage we have included the pion, nucleon, \De(1232)-resonance degrees of freedom. The ρ\rho and ω\omega meson exchanges are also included, but play a minor role in the considered energy domain (up to s=1.5\sqrt{s}=1.5 GeV). In this energy range the model provides a good description of all the important multipoles. We have allowed for only two free parameters -- the photocouplings of the Δ\Delta-resonance. These couplings are adjusted to reproduce the strength of corresponding resonant-multipoles M1+M_{1+} and E1+E_{1+} at the resonance position.Comment: 17 pages, 4 figs, version to appear in Phys. Rev. C 70 (2004

    Formation and decay of electron-hole droplets in diamond

    Full text link
    We study the formation and decay of electron-hole droplets in diamonds at both low and high temperatures under different excitations by master equations. The calculation reveals that at low temperature the kinetics of the system behaves as in direct-gap semiconductors, whereas at high temperature it shows metastability as in traditional indirect-gap semiconductors. Our results at low temperature are consistent with the experimental findings by Nagai {\em et al.} [Phys. Rev. B {\bf 68}, 081202 (R) (2003)]. The kinetics of the e-h system in diamonds at high temperature under both low and high excitations is also predicted.Comment: 7 pages, 8 figures, revised with some modifications in physics discussion, to be published in PR
    corecore