27 research outputs found

    Entwicklung und Charakterisierung eines Roboter-basierten Terahertz-Zeitbereichsspektrometers für bildgebende Anwendungen auf dem Gebiet der Anthropologie und Kunstrestaurierung

    Get PDF
    Im Rahmen dieser Arbeit wurde ein Roboter-basiertes THz-System entwickelt, welches einen THz-Sensor relativ zu einer beliebig geformten Probe verfährt. THz-Messungen können in Transmission oder Reflexion ausgeführt werden. Häufig ist jedoch die Absorption einer Probe zu hoch, um sie vollständig zu durchdringen oder eine Transmissionsanordnung ist aus geometrischen Gründen nicht möglich. Das entwickelte System arbeitet daher mit einem THz-Sensor in Reflexionsgeometrie. Hierfür muss jedoch sichergestellt sein, dass der Sensor zu jeder Zeit senkrecht zur Probe steht und sich diese wiederum in der Fokusebene des Sensors befindet. Um das System möglichst individuell einsetzen zu können, gliedert sich das entwickelte Messverfahren in vier Schritte. In einem ersten Schritt wird die Oberfläche der zu vermessenden Probe mit einem Streifenprojektionsverfahren erfasst. Anhand dieses Oberflächenmodells wird der Verfahrweg für den Roboterarm so berechnet, dass der THz-Sensor an jedem Messpunkt senkrecht und in einem definierten Abstand zum Messpunkt steht. Um den Verfahrweg des Roboterarmes so effizient wie möglich zu gestalten, sollte dieser vorab simuliert werden. Während der Simulation der Messung erfolgt gleichzeitig eine Kollisionskontrolle, um die zerstörungsfreie Überprüfung wertvoller Objekte zu garantieren. Der simulierte Messpfad wird anschließend im letzten Schritt an eine THz-Messsoftware weitergereicht, sodass die Probe Punkt für Punkt untersucht werden kann. Bevor mit der tomographischen Untersuchung der eigentlichen Objekte begonnen werden kann, ist jedoch zunächst die Anlage einer Materialdatenbank sinnvoll. Kapitel 3 dieser Arbeit zeigt daher eine Übersicht über die dielektrischen Eigenschaften aller in den Gebieten der Anthropologie und Kunstrestaurierung relevanten Materialien. Es zeigt sich, dass im Falle der Einbalsamierungsmaterialien der historischen Menschenfunde, ein hohes Identifikationspotential anhand von THz-Messungen besteht. Um die mit dem Roboter-basierten System erfassten Daten tomographisch auszuwerten, steht ein spezieller Algorithmus zur Verfügung, der die THz-Pulse in den Daten automatisch detektiert und entsprechenden Schichten zuordnet. Das entwickelte System wird an verschiedenen Objekten, die beispielhaft für die Gebiete der Anthropologie und Kunstrestaurierung stehen, getestet. Im Bereich der historischen Menschenfunde erfolgt eine detaillierte Analyse einer menschlichen Mumienhand. Hierbei können anhand der THz-Messungen bis zu vier Schichten unterhalb der Haut rekonstruiert werden, die eine hohe Übereinstimmung mit Micro-CT-Aufnahmen zeigen. Der Vergleich der THz-Daten mit konventionellen CT-Aufnahmen zeigt hingegen, dass die Auflösung der THz-Messungen die des CTs deutlich übersteigt. Gegenüber dem Micro-CT-Scanner hat das THz-System zudem den Vorteil, dass auch größere Objekte untersucht werden können. Zudem besteht ein weiterer Vorteil in der Mobilität des Systems. Mobile Röntgengeräte weisen eine sehr schlechte Auflösung auf, sodass THz-Systeme in Zukunft eine sinnvolle Ergänzung bei der direkten Arbeit an Ausgrabungsstätten sein könnten. Außerdem sind hier die Anforderungen an den Arbeitsschutz deutlich geringer als bei Röntgengeräten. Auf dem Gebiet der Kunstrestaurierung wird das System an einer Holzskulptur (Putto) getestet. Diese Holzskulptur weist deutliche Schäden sowohl in der Holzstruktur als auch in den darüber liegenden Mal- und Grundierungsschichten auf. In einer ersten Vorabuntersuchung zeigt sich, dass oberflächennahe Schäden, wie sie beispielsweise durch den weit verbreiteten Borkenkäfer entstehen, sehr gut detektiert werden können. Auch der Schichtaufbau der Mal- und Grundierungsschichten an sich kann anhand der THz-Daten korrekt rekonstruiert werden

    Realization of a Kerr-lens mode-locked vertical-external-cavity surface-emitting laser

    No full text
    Besides continuous wave (cw) operation, where light is emitted continuously over time, specially designed lasers can also generate short or even ultrashort pulses of light, the latter referred to as ultrafast lasers. So far, ultrafast laser systems have been used in different industrial and research areas such as biology, metrology or medicine. But these systems are subject to high costs and great complexity, limiting their use in new application areas that demand for low-cost and compact ultrafast laser sources, such as the optical clocking of microprocessors or free-space data communication. Semiconductor laserswould be ideally suited to meet this demand, however conventional semiconductor lasers are edge-emitters and their power cannot simply be scaled. The same is true for microcavity-based surfaceemitters. Moreover, the more powerful edge-emitters feature strongly asymmetric beam profiles, which makes them unsuitable for many ultrafast applications. Vertical-external-cavity surface-emitting lasers (VECSELs), also known as semiconductor disk lasers (SDLs), are powerful and very flexible coherent light sources. They can be considered as a hybrid system between ion-doped solid state lasers and conventional semiconductor lasers. SDLs combines the advantages of semiconductor gain, e.g. wavelength versatility, high gain cross sections, and simple fabrication, with the benefits of the ion-doped bulk lasers, such as a high-Q external cavity and excellent beam quality. Furthermore, due to the 1-D heat flow, resulting from the arrangement as a thin film laser, very efficient heat removal enables power scaling via the pump area as well as the mode size. SDLs have proved to be versatile lasers which allow for various emission schemes which on the one hand include remarkably high-power multimode or single-frequency cw operation, and on the other hand two-color as well as mode-locked emission. Mode-locked SDLs offer numerous advantages over their solid-state pendants, such as their low-complexity, compactness, cost-efficiency, and an extremely wide range of accessible emission wavelengths (from visible to mid-infrared, based on the employed material system) and repetition rates. This makes ultrafast SDLs very interesting for various applications that rely on a compact, cost-efficient and mass-producible laser technology. SDLs can be passively mode-locked using different mode-locking techniques. While previously saturable absorbers such as semiconductor saturable-absorber mirrors (SESAMs)- either external, or even internal, like in a mode-locked integrated external-cavity surface emitting laser (MIXSEL) - and recently novel-material-based carbon-nanotube or graphene saturable absorbers were employed. Up to date, the presented mode-locking techniques have led to a great enhancement in average powers, peak powers and repetition rates that can be achieved with passively mode-locked SDLs. However, the power-sensitive, complex and costly absorber mirrors, which have to be carefully designed for a certain wavelength range, naturally impose limitations on the device performance. Fortunately, on the other hand, a newmode-locking methodwas presented and discussed in recent years which is referred to as self-mode-locking (SML) or saturable-absorber-free operation of mode-locked SDLs. In this context, motivated by the demand for overcoming the aforementioned limitations, the goal of this thesis was to further exploit the potential of mode-locked SDLs. Particularly, focus on the SML or saturable-absorber-free operation technique, which is considered a promising technique for the realization of compact, robust and cost-efficient modelocked devices. In this thesis, experimental results of SML operation of SDLs in the subpicosecond regime will be presented. We show that the SML scheme is not only applicable to quantum-well-based SDLs, but also to quantum-dot-based devices. Moreover, harmonic mode-locking with sub-ps pulses is demonstrated at discrete power levels. Furthermore, to extend the applications of ultrafast SDLs, we realized an ultra-bright single-photon-source by optically exciting a deterministically integrated single quantum-dot microlens using a mode-locked SDL. The compact and stable laser system allows for overcoming the limited repetition rates of commercial mode-locked Ti:sapphire lasers and to excite the single quantum-dot microlens with a pulse repetition rate close to 500 MHz and a pulse width of 4.2 ps at a wavelength of 508 nm, utilizing second-harmonic generation in an external nonlinear crystal

    Photoexcitation dynamics and disorder effects in organic donor/acceptor systems

    No full text
    Organic semiconductors are a promising material class for applications in photovoltaics with photoconversion efficiencies beyond 10 % reported in recent years. However, despite this progress, the underlying photophysical processes of charge generation still need to be understood in greater detail. In contrast to most of their inorganic counterparts, absorption of light does not directly lead to the formation of free charges in organic systems. The primary photoexcitations in organic systems are Coulombically bound electron-hole pairs, so-called excitons. In order to promote exciton separation, the active layer in organic solar cells is therefore comprised of a donor/acceptor-blend, also known as bulk-heterojunction. In such a device, charge separation occurs at the donor/acceptor interfaces. In this context, so-called charge-transfer (CT) states are regarded as precursors for charges, signifying electron-hole pairs, which are still weakly correlated across the donor/acceptor interface. The strength of the Coulomb interaction involved is decisive for the photoconversion efficiency of an organic solar cell, as it may either promote exciton recombination or dissociation. The present work employs time-resolved photoluminescence (PL) spectroscopy to investigates radiative recombination losses, which naturally accompany the process of charge separation. The studies focus on two prototypical donor/acceptor systems P3HT/PC61BM and PTB7/PC71BM, respectively. First, luminescence decay in the neat polymers P3HT and PTB7 is characterized. The observed time-dependent red shift of the signatures is typical for organic systems and results from preferential exothermic hops of the excitons in a disordered density of states. The energetic relaxation of the emission in P3HT is consistent with an underlying Gaussian density of states. The relaxation in PTB7 is however stronger than expected, which might be due to the presence of a higher number of low-energetic tail states with respect to a typically expected Gaussian profile. In a next step, the PL of P3HT/PC61BM and PTB7/PC71BM mix films is studied. Beside the emission of so-called singlet excitons, which are also observed for the neat material, in both systems a CT signature is identified in the near-infrared. Both the CT intensity and also the drop of singlet emission intensity in blends with respect to the neat material are found to be correlated with the presence of an intimately mixed donor/acceptor phase. Furthermore, temperature-dependent PL studies show that in both material systems a high fraction of the CT emission is quenched with the help of thermal energy, suggesting that the CT binding energy is rather weak. In the final part of this work, the field-induced PL quenching in a PTB7/PCBM device is investigated under various temperatures. The decay of the PL intensity in an electric field arises from an enhanced dissociation rate of the excitons. The field-dependence of the PL quenching is thus related to the exciton binding energy. The binding energies are quantified employing a kinetic model known from literature, which is based on the assumption that exciton dissociation occurs via a multi-step hopping mechanism. The model gives an appropriate description of the data when (i) the underlying disorder is taken into account and when (ii) it is assumed that the Coulomb potential at the interface is effectively screened. The results suggest that the CT state in the PTB7/PCBM mix phase has a binding energy of about 50 meV, which is almost one order of magnitude below the binding energy of singlet excitons. The CT state can thus be regarded as a precursor for charges rather than a recombination center, as thermal energy present in the system largely promotes its dissociation. Overall, a methodological framework is presented in this work to identify and characterize the relatively weakly emitting CT states in organic donor/acceptor systems. The employed hopping model gives good agreement with the experimentally observed PL quenching over the whole investigated temperature range between 10 and 290 K. Moreover, it is demonstrated that approaches beyond the commonly applied Onsager-Braun model should be taken for an appropriate description of the charge separation process

    Untersuchungen an AlGaInN-basierten Laserdioden im sichtbaren Spektralbereich

    No full text
    Ziel dieser Arbeit war die physikalischen Ursachen des unterschiedlichen Verhaltens grüner Laserdioden im Vergleich zu blauen Bauelementen zu identifizieren. Aus diesem Grund wurden zunächst die elektro-optischen Eigenschaften von blauen und grünen InGaN-basierten Laserdioden mit Hilfe gepulster L-I-Kennlinien analysiert und miteinander verglichen. Dabei zeigte sich, dass der grüne Laser Abweichungen von dem idealen Verhalten eines Halbleiterlasers aufweist. Während weder die internen Verluste noch die Injektionseffizienz (ηinj) beider Lasertypen eine explizite Temperaturabhängigkeit im Bereich von 10-90°C aufweisen, zeigt sich im Bezug auf die Stromabhängigkeit der Injektionseffizienz ein unterschiedliches Verhalten. Bei blauen InGaN-Laserdioden kann die Injektionseffizienz als konstant angesehen werden, wohingegen ηinj bei grünen Bauteilen eine stromabhängige Abnahme aufweist. Diese konnte mit einem unzureichenden Einfang der Ladungsträger in die Quantenfilme korreliert werden. Anschließend wurde mit Hilfe von Teststrukturen untersucht, ob die Reduktion der Injektionseffizienz durch ein Überschießen von Elektronen oder Löchern verursacht wird. Durch die Variation des Aluminiumgehaltes in der Elektronenbarriere (EBL) wurde der unzureichende Einfang von Elektronen in die Quantenfilme nachgewiesen. Obwohl die Qualität der EBL einen drastischen Einfluss auf die Absolutwerte der Injektionseffizienz hat, zeigte sich jedoch keine Auswirkung auf die relative Abnahme von ηinj als Funktion des Stroms. Stattdessen konnte durch eine Teststruktur mit n-seitiger InGaN-Detektionsschicht ein stromabhängiges Überschießen von Löchern nachgewiesen werden. Um den Einfluss der stromabhängigen Injektionseffizienz auf die Laserschwelle, insbesondere den temperaturabhängigen Anstieg, zu analysieren, wurden die entsprechenden Einflussgrößen im weiteren Verlauf der Arbeit experimentell quantifiziert und es wurde ein empirisches Modell für die Laserschwelle hergeleitet. Die optische Verstärkung wurde für unterschiedliche Temperaturen und Betriebsströme mit Hilfe von Hakki-Paoli-Messungen untersucht. Für die Herleitung einer Schwellbedingung ist jedoch die Verstärkung als Funktion der Ladungsträgerdichte notwendig. Die für die Umrechnung des Stroms in Ladungsträgerdichte erforderlichen Rekombinationsparameter wurden für Temperaturen von 25 bis 80°C bestimmt. Die experimentellen Daten der Hakki-Paoli-Messungen wurden genutzt, um die physikalischen Parameter eines linearen Gewinnmodells zu bestimmen, insbesondere die Temperaturabhängigkeit der Transparenzladungsträgerdichte und des differentiellen Gewinns. Auf der Grundlage dieses Parametersatzes wurden dann die Einflussgrößen des temperaturabhängigen Schwellanstiegs anhand der Schwellbedingung, basierend auf dem linearen Gewinnmodell, hergeleitet. Somit konnte die Ladungsträgerlebensdauer, welche in dem betreffenden Operationsregime maßgeblich durch Auger-Verluste dominiert ist, als Hauptursache für den temperaturabhängigen Schwellstromanstieg identifiziert werden. Um die Langzeitstabilität der Injektionseffizienz zu untersuchen, wurden zunächst die Beschleunigungsfaktoren der Degradation grüner Laserdioden untersucht. Es zeigte sich, dass die Alterung der Bauteile elektro-thermisch aktiviert ist und sich damit vergleichbar zu dem Degradationsmechanismus von Blu-Ray Lasern verhält. Durch die Alterung einer grünen Laserdiode im Wechsel zwischen zwei unterschiedlichen Betriebszuständen, bei denen die Temperatur der aktiven Zone konstant gehalten wurde, konnte der Strom als dominierender Einflussfaktor identifiziert werden. Während des elektrischen Betriebs zeigt die Schwelle einen wurzelförmigen Anstieg, welcher bereits von blauen Laserdioden bekannt ist. Die Steilheit und damit auch die Injektionseffizienz oberhalb der Schwelle nehmen jedoch während der Degradation nicht ab. Auch die optische Verstärkung, welche durch Hakki-Paoli-Messungen vor bzw. nach Degradation charakterisiert wurde, bleibt unverändert. Allerdings konnte nachgewiesen werden, dass die Ladungsträgerdichte in den Quantenfilmen während des Betriebs abnimmt. Basierend auf den im Rahmen dieser Arbeit bestimmten Rekombinationsparametern konnte abgeschätzt werden, dass sich die Rate der defekt-assistierten Rekombinationsprozesse in den Quantenfilmen verdreifachen müsste, um die experimentell beobachtete Zunahme der Schwelle um 20% zu erklären. Dies ist unwahrscheinlich und konnte durch einen Vergleich des experimentell bestimmten EL-Verhaltens einer grünen Laserdiode unterhalb der Schwelle vor bzw. nach der Alterung mit berechneten Kennlinien als Ursache ausgeschlossen werden. In den Untersuchungen des Ladungsträgertransportes wurde gezeigt, dass auch außerhalb der Quantenfilme eine nicht zu vernachlässigende Ladungsträgerdichte existiert. Die Degradation muss somit nicht auf die Quantenfilme beschränkt sein

    Untersuchung der Multimode-Emission von optisch gepumpten Halbleiter-Scheibenlasern im Hinblick auf effiziente intrakavitäre Differenzfrequenzerzeugung

    No full text
    Optisch gepumpte Halbleiterscheibenlaser mit externem Resonator (VECSEL) stellen hochinteressante Lasersysteme dar, welche einen Betrieb bei hohen Leistungen als auch die Emission auf einem guten transversalen Modenprofil ermöglichen. Weiterhin macht der externe Resonator diese Laser sehr flexibel sowie vielseitig einsetzbar und ermöglicht unter anderem das Erreichen neuer Wellenlängen durch intrakavitäre Frequenzkonversionsprozesse. Ein besonderer Multimode-Betriebszustand des VECSELs ist die Zwei-Farben-Emission, mit welcher es durch intrakavitäre Differenzfrequenzerzeugung in einem nichtlinearen Kristall möglich wird, in den Terahertz-Bereich des elektromagnetischen Spektrums vorzustoßen. Die Realisierung eines Zwei-Farben-Betriebes, bei dem beide Farben ihre Verstärkung aus demselben Ladungsträgerreservoir beziehen, ist keineswegs trivial, da der Laseremission durch eine nicht zu vernachlässigende Modenkonkurrenz eine komplexe Dynamik aufgezwungen wird. Die vorliegende Dissertation beschäftigt sich mit der grundlegenden Untersuchung der Multimode-Emission in optisch gepumpten Halbleiterscheibenlasern. Dabei liegt der Fokus sowohl auf der Entwicklung der spektralen Zusammensetzung der Laseremission als auch auf der Charakterisierung der zeitlichen Dynamik der Emission im Zwei-Farben-Betrieb. Für die untersuchten Konfigurationen werden Parameter identifiziert, welche eine Schlüsselrolle für die Emissionsstabilität spielen. Die Erkenntnisse ermöglichen es, Betriebszustände festzulegen, unter denen eine intrakavitäre Differenzfrequenzerzeugung effizient und sinnvoll ist

    Spektrale Verbreiterung von Terahertz-Pulsen mittels eines Schottkykontakt-Wellenleiters

    No full text
    „Daß ich erkenne, was die Welt Im Innersten zusammenhält,...“ fragt nicht nur Faust im gleichnamigen Meisterwerk von Goethe, sondern ist auch heute noch eine der zentralen Fragen der modernen Physik. Wie ist Materie aufgebaut? Welche Wechselwirkungen liegen vor? Was ist die Zusammensetzung oder die chemische Struktur? Um all diese Fragen zu beantworten, entwickelten Wissenschaftler im Laufe der Jahrhunderte eine Vielzahl von Methoden. Eine der am meisten eingesetzten ist die Spektroskopie. Eine einfache und naive Beschreibung von Spektroskopie könnte lauten: Entschlüsselung von Materialeigenschaften mit Hilfe von Licht. Abhängig von der Frequenz und der verwendeten Methode können unterschiedliche Informationen aus einer Probe gewonnen werden. Im infraroten Wellenlängenbereich können mit Hilfe von Raman-Spektroskopie die Phononen-Moden untersucht werden, Röntgenspektroskopie enthüllt die innere Struktur von Kristallen, Radiowellen werden in der Kernspinresonanzspektroskopie (NMR) verwendet, um die elektronische Umgebung und die Wechselwirkung einzelner Atome zu untersuchen. Die THz-Spektroskopie kann mittels charakteristischer Absorptions- und Emissionsspektren Moleküle identifizieren. Bei all diesen Methoden ist eine genaue Kontrolle über die Beschaffenheit des verwendeten Lichts essentiell. Die drei wichtigsten Parameter, gerade in der IR-Spektroskopie, sind: hohe spektrale Auflösung, hohe Sensitivität und ein großer zugänglicher Spektralbereich. Im Rahmen des ersten Teils dieser Dissertation wird ein neuartiges Verfahren vorgestellt, welches verwendet werden kann, um den nutzbaren Spektralbereich bei spektroskopischen Messungen zu erweitern. Zur Verifikation wird die THz-Zeitbereichsspektroskopie verwendet und anhand dieser der Mechanismus erläutert. Denn gerade dort ist der technologische Aufwand, um ein breiteres Spektrum zu erreichen, enorm. Der THz-Frequenzbereich wurde erst spät erschlossen, da lange Zeit effiziente Erzeugungs- und Detektionsmechanismen gefehlt haben, um diesen Frequenzbereich zwischen Mikrowellen und infrarotem Licht zu erreichen. THz-Frequenzen sind zu hoch, um diese mit reinen elektronischen Methoden, üblicherweise bewegte Ladungsträger innerhalb eines Bandes, zu erreichen, aber auch zu niedrig, um diese direkt optisch, durch atomare oder interband Übergänge in Festkörpern, zu erzeugen. Erst 1975 entwickelte D.H Auston eine optoelektronische Methode, um THz-Strahlung leicht zu erzeugen und zu detektieren und ebnete damit den Weg für die moderne THz-Spektroskopie. Im Rahmen dieser Dissertation wird eine neue Möglichkeit vorgestellt, um ein THz-Spektrum zu erweitern unabhängig von der Art und Weise der Erzeugung und Detektion der THz-Strahlung. In dieser Arbeit soll durch die Verwendung eines gleichrichtenden Schottkykontakts in Wellenleitergeometrie ein Halbleiterbauelement entwickelt werden, welches nachträglich in ein bestehendes Spektrometer eingesetzt werden kann und ein bestehendes Frequenzspektrum erweitern kann. Dadurch sollen experimentell höhere Frequenzen für die spektroskopische Auswertung zugänglich werden, welche bisher ein zu schlechtes Signal-zu-Rausch Verhältnis haben. Die Dissertation enthält einen zweiten Teil, welcher im Rahmen eines Forschungsaufenthalts in der Gruppe von Prof. Tony Heinz im Zeitraum von 2013 bis 2014 an der Columbia Universität in New York entstanden ist. Auch dieser Teil beschäftigt sich mit der Wechselwirkung von Licht mit dünnen Schichten und behandelt dabei eines der zentralen Ziele der experimentellen Halbleiterphysik: das Verständnis der optischen und elektronischen Eigenschaften neuartiger Halbleitermaterialien. Im Fokus der Untersuchungen steht dabei ein neuartiger niedrigdimensionaler Halbleiter: organisch-anorganischer Perowskit Kristall. Niedrigdimensionale Halbleiter weisen ein erhebliches Potential gegenüber vergleichbaren Volumenhalbleitermaterialien auf, da ihre elektronischen und optischen Eigenschaften über die Dimension und Geometrie ihres Aufbaus gezielt eingestellt und technologisch ausgenutzt werden können. In den letzten Jahrzehnten etablierte niedrigdimensionale Halbleiterstrukturen sind Quantenfilme, Quantendrähte und Quantenpunkte, die zwei-, ein- bzw. nulldimensionale Systeme in z. B. Verbindungshalbleitermaterialsystemen realisieren. Eine Einschränkung der Dimensionalität in Bezug auf die Eigenschaften dieser Strukturen wird hier im zweidimensionalen Fall durch Schichtstrukturen erreicht, die immer noch aus vielen Moleküllagen eines Halbleitermaterials bestehen. Durch die seit einiger Zeit mögliche Erzeugung von neuen „wirklich“ zweidimensionalen Materialien, die aus nur einer einzigen Moleküllage bestehen, sind jetzt auch diese neuartigen Festkörper und ihre beeindruckenden physikalischen Eigenschaften immer mehr in den Fokus der Forschung gerückt. Ihre prominentesten Vertreter sind Graphen, Molybdändisulfid (MoS2) und Bismuttellurid (Bi2Te3). grep -P "[\x80-\xFF]" Die ersten systematischen Studien an niedrigdimensionalen Festkörpern wurden ermöglicht durch Fortschritte in der Synthese von Halbleiterheterostrukturen und reichen zurück bis in die erste Hälfte des letzten Jahrhunderts. Die frühesten Strukturen, die für Untersuchungen zur Verfügung standen, waren Quantenfilme. Diese bestanden aus einem einigen Nanometer dünnen Film eines Halbleitermaterials, eingebettet zwischen zwei Barriereschichten eines Materials mit größerer Bandlückenenergie. Für Ladungsträger innerhalb der Quantentöpfe stellt die Diskontinuität im Bandverlauf aufgrund der unterschiedlichen Bandlückenenergien eine Potentialbarriere dar. Eine solche Barriere beeinflusst die freie Beweglichkeit der Ladungsträger in der entsprechenden Raumrichtung und sie können deshalb als quasi-zweidimensional betrachtet werden. Dieser sogenannte „Quantum-Confinement-Effekt“ tritt auf, wenn die Quantenfilmschichtdicke, also die Potentialtopfbreite, in der Größenordnung der Wellenfunktionsausbreitung im Ortsraum ist, wobei in vielen Fällen direkt die Wirkung auf Exzitonen (Coulomb-gebundenen Elektron-Loch-Paaren) betrachtet wird. Dieser Einschlusseffekt wirkt sich deutlich auf die Ein- und Vielteilcheneigenschaften des Materials aus. Quantenfilmstrukturen weisen im Vergleich zu räumlich ausgedehnten Volumenhalbleitern derselben chemischen Zusammensetzung unterschiedliche und definiert einstellbare Eigenschaften auf. Zum Beispiel ist in Quantenfilmen die Coulomb Wechselwirkung zwischen Ladungsträgern sowie die Licht-Materie Kopplung wesentlich stärker als in den ausgedehnten Volumenmaterialien der gleichen chemischen Zusammensetzung. Auch die Streuung von Elektronen an Gitterschwingungen, also an Phononen, wird durch die eingeschränkte Dimensionalität stark beeinflusst. Klassische Halbleiterheterostrukturen haben heutzutage das wissenschaftliche Forschungsfeld bereits hinter sich gelassen und den Weg in das alltägliche Leben mit zahlreichen Technologieanwendungen gefunden. Effiziente lichtemittierende Dioden oder Halbleiterlaser, rauscharme Detektoren und hochfrequente Feldeffekttransistoren wären jedoch ohne die vorherigen Bemühungen in der wissenschaftlichen Grundlagenforschung undenkbar. Als Monolage verwirklichte zweidimensionale Materialien sind erst seit kurzem zugänglich. Sie bestehen aus einer makroskopisch ausgedehnten einzigen atomaren oder molekularen Schicht und stellen somit die dünnste mögliche Realisierung des jeweiligen Festkörpers dar. Der prominenteste Vertreter dieser Gruppe von Materialien ist sicherlich Graphen. Graphen ist eine zweidimensionale Modifikation von Kohlenstoff, bestehend aus nur einer hexagonal angeordneten Monolage von Kohlenstoffatompaaren. Obwohl die ersten theoretischen Studien schon Mitte des 20. Jahrhunderts veröffentlicht wurden und die ersten experimentellen Versuche, Graphen zu synthetisieren auch in diese Zeit fallen, ist es erst 2004 gelungen makroskopische zweidimensionale Kohlenstoffschichten herzustellen und eindeutig zu charakterisieren. Seither haben sich einige tausend Publikationen mit diesen neuartigen Festkörpern beschäftigt. Diese hohe Anzahl ist dabei nicht auf die einfache Verfügbarkeit von Graphen zurückzuführen, sondern vielmehr auf dessen außergewöhnlichen Eigenschaften. Eine der interessantesten davon, gerade im Vergleich zum dreidimensionalen Gegenstück der Kohlenstoffmodifikation Graphit, ergibt sich aus der Bandstruktur von Graphen. An den sechs Eckpunkten der Brillouinzone, den K-Punkten, berühren sich Valenz- und Leitungsband, sodass sich um die K-Punkte eine lineare Dispersionsrelation ergibt. Daraus resultiert, dass sich Elektronen in Graphen formal wie masselose und ultrarelativistische Teilchen verhalten. Graphen ist leichter, härter und flexibler als alle bislang bekannten elektrischen Leiter und wird daher als „Wundermaterial“ der Zukunft angesehen. Für die Entdeckung und die ersten grundlegenden Experimente an Graphen erhielten Andre Geim und Konstantin Novoselov 2010 den Nobelpreis für Physik. Durch die bei der Synthese von Graphen gewonnenen Erkenntnisse sind in den letzten Jahren einige weitere zweidimensionale Halbleiter verfügbar geworden. Dazu gehören unter anderem atomar dünne Platten aus Molybdändisulfid (MoS2), Molybdändiselenid (MoSe2), Bismuttellurid (Bi2Te3), Bohrnitrid (BN), Niobiumdiselenid (NbSe2), Wolframdisulfid (WS2) und Bismut-Strontium-Calcium-Kupferoxid (Bi2Sr2CaCu2Ox). Diese Materialien sind jedoch bei weitem noch nicht so gut erforscht wie Graphen. Auch sie weisen signifikante Eigenschaftsunterschiede im Vergleich zu den dreidimensionalen Gegenstücken auf. Zum Beispiel zeigt sich im Grenzfall zur Monolage von Molybdändisulfid (MoS2) ein Übergang vom indirekten zum direkten Halbleiter. Bismuttellurid hat nachweislich nicht nur eine extrem niedrige Wärmeleitfähigkeit und eine sehr hohe elektrische Leitfähigkeit, sondern auch vergrößerte thermoelektrische Koeffizienten. All diese neuen Materialien lassen sich in einer Art Bilbliothek zusammenfassen, wobei auch die verschiedensten Kombination untereinander als Heterostrukturen realisiert werden können, um maßgeschneiderte Materialien herzustellen. Im Rahmen dieser Arbeit soll ein neues Materialsystem zu dieser Bibliothek hinzugefügt werden: Ultradünne kristallinie Lagen von organisch-anorganischen Perowskitkristallen (OIPC)

    Photoconductive Terahertz Emitters and Detectors for the Operation with 1550 nm Pulsed Fiber Lasers

    No full text
    In this thesis, photoconductive terahertz (THz) emitters and detectors suitable for the excitation with femtosecond laser pulses centered on 1550 nm are investigated. The motivation for this study is the development of cost-efficient, flexible and rapid THz time-domain-spectroscopy (TDS) systems for the application in growing fields like non-destructive testing (NDT) and inline process monitoring. In order to achieve this goal, the physics of the generation and detection of THz radiation in photoconductors is investigated. The combination of experimental data with the analytic modeling of the carrier dynamics in THz photoconductors allows for a detailed understanding of the interplay between the growth conditions of the photoconductor and the properties of the fabricated THz device. In this work, three different photoconductive materials were studied as THz emitters and detectors. All these photoconductors contain layers of the ternary semiconductor indium gallium arsenide (InGaAs). When InGaAs is grown lattice matched to an indium phosphide (InP) substrate, the material can be excited by erbium doped femtosecond fiber lasers with a central wavelength around 1550 nm. Therefore, InGaAs is a predestinated absorber in photoconductive THz emitters and detectors. Aside from the common InGaAs layers, the photoconductors investigated in this thesis feature essentially different electrical and optical properties. The reason is that theoretical models and experimental results obtained within the last two decades revealed different demands on photoconductors for THz emitters and detectors. On the detector side, a sub-picosecond electron lifetime is required for the detection of broadband THz radiation with high dynamic range. In contrast, photoconductive materials for THz emitters require high breakdown fields and carrier mobility, whereas the electron lifetime is of minor importance. Therefore, the first part of this work is dedicated to the development of InGaAs-based photoconductors for THz emitters and receivers. Photoconductors with sub-picosecond electron lifetimes were obtained by low-temperature growth of InGaAs with molecular beam epitaxy (MBE). At temperatures below 300 °C the growth is non-stoichiometric and arsenic antisites are incorporated as point defects into the lattice. When these antisites are ionized they serve as fast trapping and recombination centers. In this work, it is shown that the concentration of the (ionized) antisites can be controlled by the growth temperature, by using an additional p-dopant (beryllium), and by the temperature and the duration of a post-growth annealing step. Electron lifetimes as short as 140 fs were obtained. The precise adjustment of all these parameters allowed for the design and the fabrication of THz receivers with a spectral bandwidth of up to 6 THz and a peak dynamic range exceeding 95 dB. For THz emitters, a high mobility, which is generally equivalent to a low defect density, is required in order to enable the efficient acceleration of the photoexcited carriers in the electric field applied to the emitter. Due to the high density of defects, low-temperature-grown (LTG) InGaAs based photoconductors are not the material of choice for THz emitters. Instead, a material comprising almost defect free layers of InGaAs surrounded by InAlAs barriers containing a high density of deep defects was used. These properties were achieved at growth temperatures close to 400 °C in a MBE system. At those temperatures, alloying forms deep defects inside the InAlAs layers, whereas InGaAs grows almost defect free. A THz-power of up to 112 μW ± 7 μW was measured for emitters fabricated from this photoconductor, which is an increase by a factor of 100 compared to emitters made of the LTG material. By combining the optimized photoconductive emitters and receivers compact THz-TDS systems with up to 6 THz bandwidth and 90 dB peak dynamic range were realized. In addition, an all fiber-coupled THz spectrometer with kHz measurement rate as well as a fully fibercoupled near-field imaging system with a lateral resolution of 100 μm was demonstrated with these optimized photoconductive devices. However, a critical disadvantage of individual THz emitter and detector devices appears when THz-TDS measurements are performed in reflection geometry. Since many applications in NDT and in-line process monitoring allow only one side access to the sample under test, reflection measurements are the common use-case of THz-TDS in these fields. In this thesis, a fiber-coupled, monolithically integrated THz transceiver was developed, which combines the emitter and the receiver on a single photoconductive chip. As the photoconductor, Be-doped LTG-InGaAs/InAlAs with 0.5 ps electron lifetime was used in order to enable a broadband detection. The optical coupling of the transceiver was realized with the help of a polymer waveguide chip. With a bandwidth of 4.5 THz and a peak dynamic range larger than 70 dB this THz transceiver showed a significant performance increase compared to previous transceiver concepts (2 THz bandwidth and 50 dB peak dynamic range). In order to further increase the performance of THz transceivers a novel photoconductor had to be developed, which combines the required properties of THz emitters and detectors in the same material. For this purpose, iron (Fe) doped InGaAs grown by MBE was investigated. At growth temperatures close to 400 °C iron could be incorporated homogenously up to concentrations of 5 × 1020 cm-3. The resulting material combined sub-picosecond electron lifetime with high breakdown fields and high mobility. Applied as a photoconductive emitter, 75 μW ± 5 μW of radiated THz power were measured. As a detector, THz pulses with a bandwidth of up to 6 THz and a peak dynamic range of 95 dB were obtained. Hence, Fe-doped InGaAs has not only the potential to replace the relatively complex state-of-the art photoconductors, it also bears great potential for future integrated THz devices. In conclusion, the systematic study of the electrical properties and the carrier dynamics in InGaAs-based photoconductive materials led to significant improvements of individual THz emitter and detector devices. The detectable bandwidth was increased by 50 % from below 4 THz to 6 THz and the emitted THz power was enhanced by a factor of 100. Further, the knowledge from these studies was exploited for the fabrication of a fiber-coupled, monolithically integrated THz transceiver with a 4.5 THz bandwidth and 70 dB peak dynamic range. These results are a significant increase in THz performance compared to previous transceiver concepts (2 THz bandwidth and 50 dB dynamic range). In order to allow for further improvements of THz transceivers and integrated THz devices, Fe-doped InGaAs was investigated as a photoconductive emitter and detector. Due to the unique combination of subpicosecond electron lifetime, high resistivity (> 2 Ω cm) and high mobility (> 900 cm2V-1s-1) Fe-doped InGaAs showed a performance comparable to the optimized THz photoconductors. Hence, the results presented in this work pave the way for compact and integrated THz devices for applications in industrial environments

    Wasserstatusüberwachung an Nutzpflanzen mittels THz-Spektroskopie

    No full text
    Das Grundprinzip der zerstörungsfreien, nicht-invasiven Messung des Blattwassergehalts mittels THz- und Sub-THz-Strahlung basiert darauf, dass Strahlung in diesem Frequenzbereich durch flüssiges Wasser wesentlich stärker absorbiert wird als durch die sonstigen Bestandteile eines Blattes. Die durch das Blatt transmittierte Signalamplitude hängt also maßgeblich von dessen Wassergehalt ab. Die Messung selbst erfordert keinen mechanischen Kontakt zum Blatt, allerdings ist es zweckmäßig, das Blatt so zu befestigen, dass es möglich wird, die Messungen reproduzierbar an derselben Stelle auf dem Blatt auszuführen. Zur Durchführung von Langzeit-Messreihen mit verschiedenen Nutzpflanzen wurde ein Laboraufbau realisiert, der Experimente mit mehreren Pflanzen gleichzeitig ermöglicht. In diesem Versuchsaufbau kommt ein fasergekoppeltes THz-Zeitbereichsspektrometer zum Einsatz, dessen Emitter und Detektor zusammen mit den THz-Optiken in Form eines kompakten Messkopfes am Arm eines Goniometers montiert sind. Die untersuchten Pflanzen sind in einer kreisförmigen Anordnung aufgestellt, so dass diese durch einen automatisierten Bewegungsablauf des motorisierten Goniometerarms erreicht werden können. Mit diesem Versuchsaufbau wurden Messungen mit verschiedenen Nutzpflanzen durchgeführt. Durch die gleichzeitige Erfassung des Gewichts der Töpfe mit den Pflanzen kann ein Bezug zwischen der Wasserversorgung der Pflanzen und deren Blattwassergehalt hergestellt werden. Im Vergleich zwischen Roggen und Hafer lässt sich so ein signifikanter Unterschied feststellen, was die Mindestmenge der Wasserversorgung betrifft, deren Unterschreiten zum Austrocknen der Pflanzen führt, was sich in einem Anstieg der Amplitude des durch das Blatt transmittierten THz-Signals zeigt. Wenn eine Pflanze nach dem Aussetzen der Bewässerung wiederbewässert wird, zeigt sich, ob das untersuchte Blatt sich vom Trockenstress wieder erholen kann. Sofern dies der Fall ist, fallen die unter Trockenstress angestiegenen THz-Messwerte wieder auf ihr ursprüngliches Niveau, auf dem sie sich vor dem Austrocknen des Blattes befanden. Es konnte nachgewiesen werden, dass ein Zusammenhang besteht zwischen dem durch die THz-Messungen festgestellten Wassergehalt eines Blattes zum Zeitpunkt der Wiederbewässerung und seiner Fähigkeit, sich nach der Wiederbewässerung zu erholen. Im Fall von Maispflanzen lassen sich die in dieser Hinsicht gemachten Beobachtungen in drei nach dem Grad der Austrockung der Blätter gestaffelte Gruppen einteilen, die dadurch gekennzeichnet sind, ob die Blätter sich vollständig, nur kurzzeitig oder gar nicht erholen. Es lässt sich so für die Messwerte eine Schwelle finden, bis zu der eine vollständige Erholung des Blattes sehr wahrscheinlich ist und nach deren Überschreiten unwahrscheinlich wird. Bei Messungen an Sojapflanzen wurden zudem parallel Messungen mit einem Photosynthese-Messsystem durchgeführt, deren Ergebnisse in sinnvoller Übereinstimmung mit den THz-Messungen sind. Zur Bestimmung des Blattwassergehalts als Volumen- oder Gewichtsanteil kann ein Modell verwendet werden, welches das Blatt als effektives Medium beschreibt, das sich aus einer Mischung aus Wasser, Trockenmasse und Luft zusammensetzt. Eine weitere Einsatzmöglichkeit der THz-Zeitbereichsspektroskopie im Bereich der Nutzpflanzen stellt die Qualitätskontrolle von Saatgut dar. Am Beispiel von Zuckerrübensamen wurde gezeigt, dass sich mittels THz-Messungen mit hoher Zuverlässigkeit bestimmen lässt, ob die Samen einen für ihre Keimfähigkeit notwendigen Embryo enthalten oder nicht. Eine Möglichkeit, die Kosten und die Komplexität eines THz-Spektrometers zu reduzieren, stellt die THz-Quasi-Zeitbereichsspektroskopie dar, die an Stelle eines modengekoppelten Kurzpulslasers eine einfache Multimode-Laserdiode verwendet. Mit einem solchen THz-Quasi-Zeitbereichsspektrometer wurden Messungen an Pflanzen ausgeführt, die in guter Übereinstimmung mit den Messreihen mit dem fasergekoppelten THz-Zeitbereichsspektrometer sind. Zudem wurde das THz-Quasi-Zeitbereichsspektrometer zu einem kompakten, vergleichsweise einfach zu transportierenden Messsystem weiterentwickelt, das im Freien verwendet werden kann. In dem Fall, dass nicht ein einzelnes Blatt untersucht werden soll, sondern ein größerer Teil einer Pflanze, kann dies durch die Verwendung etwas größerer Wellenlängen im Sub-THz-Frequenzbereich realisiert werden. Bei Messungen bei einer Frequenz von 35 GHz mit einer Gruppe von unter Trockenstress stehenden Gerstenpflanzen und einer regelmäßig bewässerten Kontrollgruppe war die Austrocknung der Pflanzen unter Trockenstress in den Messungen deutlich feststellbar und die beiden Gruppen waren klar voneinander zu unterscheiden. Die durchgeführten Arbeiten zeigen also, dass je nach angestrebtem Einsatzzweck verschiedene auf THz- und Sub-THz-Strahlung basierende Verfahren zur Bestimmung des Wasserstatus von Nutzpflanzen zur Verfügung stehen

    Charakterisierung teilkristalliner und gealterter Polymersysteme mittels Terahertz-Spektroskopie

    No full text
    In den letzten Jahren stieg das Interesse an der zerstörungsfreien Materialanalytik mit Terahertz-Strahlung. In vielen Anwendungsszenarien bietet die Terahertz-Spektroskopie vielfältige Möglichkeiten Materialien zu charakterisieren und zu klassifizieren. In dieser Arbeit wurde das Potential der THz-Spektroskopie zur zerstörungsfreien Kunststoffanalytik untersucht. Hierzu sind verschiedene Thermoplasten spektroskopisch hinsichtlich ihrer dielektrischen Eigenschaften charakterisiert worden. Insbesondere die Absorptionsspektren der aromatischen Polyester PET und PBT werden ausführlich erläutert und der molekulare Ursprung der beiden charakteristischen Absorptionsbanden diskutiert. In der Kunststoff verarbeitenden Industrie stellt die Orientierung von Molekülen in Kunststoffbauteilen eine wichtige Fragestellung dar, steht diese doch in engem Zusammenhang mit den mechanischen Materialeigenschaften. Es konnte gezeigt werden, dass die Molekülorientierung sowohl in extrudierten Folien als auch in spritzgegossenen Kunststoffbauteilen aus THz-Messungen gewonnen werden kann. Die Verknüpfung von optischen Größen im THz-Frequenzbereich mit dem Vorgang der isothermen Kristallisation wird ebenfalls dargestellt. Die gewonnenen spektroskopischen Daten konnten mit Hilfe der Avrami-Theorie modelliert werden, so dass hier ein direkter Zusammenhang zwischen experimentell gewonnenen Daten im THz-Frequenzbereich und etablierter physikalisch-chemischer Theorie ermöglicht werden konnte. Der Kristallisationsgrad, eine der zentralen Größen der Makromolekularen Chemie, konnte direkt mit den optischen Parametern korreliert werden. So kann die zerstörungsfreie THz-Spektroskopie zur Bestimmung des Kristallisationsgrads der zerstörenden thermischen DSC-Analyse gegenüber gestellt werden. Die Untersuchungen der unterschiedlichen Kristallstrukturen von PBT zeigen das Potential der polarisationssensitiven, winkelaufgelösten THz-Spektroskopie hinsichtlich der Anwendbarkeit in der Kristallanalytik. Die untersuchten Kristallformen des PBTs, der Lamellenkristalle, der smektischen Mesophase und der Shish-Kebab-ähnlichen Kristallstruktur konnten alle durch THz-Spektroskopie charakterisiert werden. Die Kristallographie von Polymerkristallen in Verbindung mit den mechanischen Eigenschaften der Kunststoffe kann zunehmend an Interesse gewinnen, stellt die THz-Strahlung im Vergleich zur Röntgenbeugungsanalyse doch ein einfaches Verfahren dar. Abschließend werden erste Untersuchungen zur Detektion von Alterungseffekten mit der THz-Spektroskopie gezeigt. Hier ist es gelungen, die Alterungsvorgänge der Depolymerisation, der Oxidation, der Wasserimmersion und der UV-Bestrahlung an Thermoplasten aber auch an Duroplasten mit der Technik der THz-Spektroskopie zu untersuchen und die Alterung sowohl zu qualifizieren als auch zu quantifizieren. Die Anwendung der Hauptkomponentenanalyse zur Unterscheidung von THz-Spektren verschieden gealterter Duroplaste zeigt, dass dies ein zukünftiges Werkzeug zur Spektrenaufbereitung im THz-Frequenzbereich sein kann. Beispielhaft konnte im Rahmen dieser Arbeit verdeutlicht werden, dass Spektrenscharen hierdurch kategorisiert werden können, wodurch die Alterungseffekte klassifiziert werden können. Ein direkter praktischer Ansatz zur Etablierung der THz-Spektroskopie im industriellen Umfeld kann die Identifikation von freigesetztem Weichmacher in PVC sein. Wie in nachgewiesen werden konnte, korrelieren die optischen Parameter im THz-Frequenzbereich mit dem Weichmachergehalt. Die weiteren Analysen zeigen, dass sowohl die Identifikation der Ausdunstung von Weichmacher als auch die Unterscheidung von Weichmachertypen anhand der THz-Spektren möglich ist. Alle Ergebnisse dieser Arbeit bestätigen, dass die THz-Spektroskopie ein enormes Potential für die quantitative und qualitative Analyse von Polymeren besitzt

    Lateral strukturierte Oberflächen zur THz-Strahlmanipulation

    No full text
    Die Terahertz-Zeitbereichsspektroskopie ist mittlerweile eine etablierte spektroskopische Methode im Frequenzbereich von 0;2 THz bis etwa 5 THz. Mit der stetigen Verbesserung von Zeitbereichs-Spektrometern, in den letzten Jahren hauptsächlich vorangetrieben durch die Verbesserung der Materialsysteme sowohl im photoleitenden Emitter als auch im Detektor sind heute Systeme mit bis zu 90 dB SNR und 4;5 THz Brandbreite verfügbar. Auch der Einfluss anderer Systemkomponenten, deren Beitrag zum Gesamtrauschen vormals vernachlässigbar war, sollte daher neu überdacht werden. Der Beitrag dieser Arbeit zu diesem Themenkomplex setzt sich zum einen aus der erneuten Auseinandersetzung mit der Messdatenauswertung in Kapitel 2.3.1 als auch mit der Untersuchung von statistischen Positionierfehlern der Verzögerungseinheit in Kapitel 2.3.3 zusammen. In Kapitel 2.3.1 ist die Gauß'sche Fehlerpropagation der Messfehler im Zeitbereich auf die optischen Konstanten der Hauptbeitrag der Arbeit zur Verbesserung der Messdatenauswertung. Bei der Untersuchung der statistischen Fehler der Verzögerungseinheit zeigt sich, dass die aktuell verwendeten hochpräzisen Verzögerungseinheiten (PI, MICOS) auch in aktuellen Systemen noch keinen Einfluss auf den maximalen Signal-zu-Rausch Abstand haben [95]. Hier gilt es vielmehr, die grundlegende Theorie zur Abtastung von zeitlich begrenzten Signalen zu beachten, d. h. zusammenfassend kurze Messfenster bei hoher Zeitauflösung. Die Messdaten belegen weiterhin, dass ein wesentlich größerer Fehler in der Zeitachse von Zeitbereichsdaten häufig systematischer Natur ist. Deren Ursprung kann sowohl in der Mechanik der Verzögerungsstrecke oder aber auch in der Art und Weise der Datenaufnahme liegen [48]. Offen bleibt bislang, wie Fehlerabschätzungen bei der Auswertung von Mehrschichtsystemen am besten durchgeführt werden sollten. Großes praktisches Interesse besteht an der Auswertung dieser Mehrschichtsysteme hinsichtlich Dickenbestimmung der einzelnen Schichten bei bekannten Brechungsindizes, dies könnte etwa für die Untersuchung von Kunstobjekten oder Lackschichten zum Einsatz kommen. Die aktuell verwendeten Algorithmen bieten hier noch Potential für weitere Verbesserungen. Vorbereitend für die Messungen zu dem plasmonischen Bessel-Strahlformer sind Strahlprofilmessungen mit unterschiedlichen Detektoren in Kapitel 2.2 dargestellt. Es zeigt sich, dass die auf Mikrobolometern basierenden THz-Kameras in naher Zukunft eine schnelle und zuverlässige Hilfe zur Justage des THz-Freistrahles werden können. Als wichtigstes Ergebnis ist vielleicht die Zeitbereichsdarstellung des Strahlprofiles in Abbildung 2.11 als unerlässliche Hilfe zur Kollimation und auch Fokussierung von THz-Strahlen identifiziert worden. Mit dieser Darstellung lassen sich mit wenigen Einzelmessungen sehr verlässlich THz-Optiken wie etwa Linsen justieren. Mit diesen Werkzeugen an der Hand wurde in Kapitel 3 ein plasmonischer Bessel- Strahlformer für den THz-Bereich untersucht. Es wird bestätigt, dass die Wechselwirkung von THz-Strahlung und Metalloberflächen durch aufgebrachte, periodische Strukturen beeinflusst werden kann. So lassen sich plasmonische Oberflächen-Wellenleiter aus Metall-Dielektrika Grenzschichten für THz-Frequenzen herstellen. Mittels eines Gitterkopplers wurde die geführte Oberflächenwelle wieder in den Freiraum gestreut und so ein Bessel-Strahlprofil erzeugt. Das Bauteil stellt damit eine neue Klasse von THz-Optiken dar. THz- Emitter könnten potentiell in plasmonische strahlformende Strukturen integriert werden und so die gewünschte Abstrahlcharakteristik der photoleitenden Antennen maßschneidern. Weitere Herausforderungen an solche strahlformenden Elemente könnten z.B. die Anregung von radialsymmetrischen Strahlprofilen oder die Kontrolle der Polarisation des abgestrahlten THz-Feldes sein. Von einem wissenschaftlichen Standpunkt aus betrachtet sind die verbliebenen offenen Fragen bei den durchgeführten Nahfeld-Messungen interessant. Die theoretische Dispersionsrelation liegt zwar im Mittel nah an der experimentell bestimmten, doch gibt es deutliche Abweichungen, deren Erklärung noch unklar ist. Im Kapitel 4 wird die Idee des Gitterkopplers erneut aufgegriffen um einen 3D-gedruckten Wellenleiter mit aufgesetztem Auskoppelgitter für 120 GHz herzustellen. Obwohl mit dieser Wellenleiterstruktur die aktuellen Grenzen des Herstellungsverfahrens ausgereizt wurden, ist zu erwarten dass die 3D-Druck Technologie in den nächsten Jahren noch weitere Verbesserungen erfährt. So könnte es demnächst möglich sein, noch feinere Strukturen zu drucken, wodurch der Weg für die breitbandige Charakterisierung der gefertigten Bauteile mittels THz-Zeitbereichsspektroskopie frei wäre. Durch die sehr kurzen Zyklen zwischen Entwurf, Simulation, Druck und Messung der Bauteile können so die gewünschten Elemente zur THz-Strahlmanipulation iterativ optimiert werden. Von der Vielzahl der bereits demonstrierten 3D-gedruckten Bauteile sind Wellenleiter am vielversprechendsten. Für diese gibt es noch eine Reihe interessanter Ideen, wie etwa die Verwendung eines Mach-Zehnder Interferometers mit Flüssigkristall in einem Arm oder die Erstellung von dielektrischen THz-"Fasern". Eine ganz ähnliche Idee steht hinter den Aerosol-Jet gedruckten Metamaterialien aus Kapitel 5. Hier wird eine neue Technologie, das Aerosol-Jet Druck Verfahren zur Herstellung von Metamaterialien, künstlichen Materialien mit maßgeschneiderten Brechungsindex demonstriert. Während die periodisch strukturierten Metalloberflächen die Dispersionsrelation des Oberflächenplasmons im Bessel-Strahlformer Kapitel verändern, ist es hier die periodische Anordnung der Einheitszellen, die zu Materialien mit künstlichen Brechungsindex-Verläufen für den THz-Bereich führen. Die prototypische Herstellung von leitfähigen Strukturen auf dünne Folien, wie sie durch den Aerosol-Jet Druck möglich ist, könnte die Forschung an THz-Metamaterialien deutlich beschleunigen. Die vorgestellte Struktur aus alternierenden geschlossenen Ring Resonatoren ist eine interessante Teststruktur für die Erforschung von winkelsensitiven Metamaterialien
    corecore