211 research outputs found
A Systematic Investigation of Light Heavy-Ion Reactions
We introduce a novel coupling potential for the scattering of deformed light
heavy-ion reactions. This new approach is based on replacing the usual
first-derivative coupling potential by a new, second derivative coupling
potential in the coupled-channels formalism. The new approach has been
successfully applied to the study of the C+C, C+Mg,
O+Si and O+Mg systems and made major improvements
over all the previous coupled-channels calculations for these systems. This
paper also shows the limitations of the standard coupled-channels theory and
presents a global solution to the problems faced in the previous theoretical
accounts of these reactions.Comment: 7 pages with 4 figure
Energy Dependence of Breakup Cross Sections of Halo Nucleus 8B and Effective Interactions
We study the energy dependence of the cross sections for nucleon removal of
8B projectiles. It is shown that the Glauber model calculations with
nucleon-nucleon t-matrix reproduce well the energy dependence of the breakup
cross sections of 8B. A DWBA model for the breakup cross section is also
proposed and results are compared with those of the Glauber model. We show that
to obtain an agreement between the DWBA calculations, the Glauber formalism,
and the experimental data, it is necessary to modify the energy behavior of the
effective interaction. In particular, the breakup potential has a quite
different energy dependence than the strong absorption potential.Comment: 13 pages, 4 figure
Equation of state for nuclear matter based on density dependent effective interaction
An interesting method of obtaining equation of state for nuclear matter, from
a density dependent M3Y interaction, by minimizing the energy per nucleon is
described. The density dependence parameters of the interaction are obtained by
reproducing the saturation energy per nucleon and the saturation density of
spin and isospin symmetric cold infinite nuclear matter. The nuclear matter
equation of state thus obtained is then used to calculate the pressure, the
energy density, the nuclear incompressibility and the velocity of sound in
nuclear medium. The results obtained are in good agreement with experimental
data and provide a unified description of radioactivity, scattering and nuclear
matter.Comment: 10 pages including 2 figure
A Global Potential Analysis of the O+Si Reaction Using a New Type of Coupling Potential
A new approach has been used to explain the experimental data for the
O+Si system over a wide energy range in the laboratory system
from 29.0 to 142.5 MeV. A number of serious problems has continued to plague
the study of this system for a couple of decades. The explanation of anomalous
large angle scattering data; the reproduction of the oscillatory structure near
the Coulomb barrier; the out-of-phase problem between theoretical predictions
and experimental data; the consistent description of angular distributions
together with excitation functions data are just some of these problems. These
are long standing problems that have persisted over the years and do represent
a challenge calling for a consistent framework to resolve these difficulties
within a unified approach. Traditional frameworks have failed to describe these
phenomena within a single model and have so far only offered different
approaches where these difficulties are investigated separately from one
another. The present work offers a plausible framework where all these
difficulties are investigated and answered. Not only it improves the
simultaneous fits to the data of these diverse observables, achieving this
within a unified approach over a wide energy range, but it departs for its
coupling potential from the standard formulation. This new feature is shown to
improve consistently the agreement with the experimental data and has made
major improvement on all the previous coupled-channels calculations for this
system.Comment: 21 pages with 12 figure
Thermonuclear Reaction Rate of 23Mg(p,gamma)24$Al
Updated stellar rates for the reaction 23Mg(p,gamma)24Al are calculated by
using all available experimental information on 24Al excitation energies.
Proton and gamma-ray partial widths for astrophysically important resonances
are derived from shell model calculations. Correspondences of experimentally
observed 24Al levels with shell model states are based on application of the
isobaric multiplet mass equation. Our new rates suggest that the
23Mg(p,gamma)24Al reaction influences the nucleosynthesis in the mass A>20
region during thermonuclear runaways on massive white dwarfs.Comment: 13 pages (uses Revtex) including 3 postscript figures (uses
epsfig.sty), accepted for publication in Phys. Rev.
Dependence of direct neutron capture on nuclear-structure models
The prediction of cross sections for nuclei far off stability is crucial in
the field of nuclear astrophysics. We calculate direct neutron capture on the
even-even isotopes Sn and Pb with energy levels,
masses, and nuclear density distributions taken from different
nuclear-structure models. The utilized structure models are a
Hartree-Fock-Bogoliubov model, a relativistic mean field theory, and a
macroscopic-microscopic model based on the finite-range droplet model and a
folded-Yukawa single-particle potential. Due to the differences in the
resulting neutron separation and level energies, the investigated models yield
capture cross sections sometimes differing by orders of magnitude. This may
also lead to differences in the predicted astrophysical r-process paths.
Astrophysical implications are discussed.Comment: 25 pages including 12 figures, RevTeX, to appear in Phys. Rev.
Hartree Fock Calculations in the Density Matrix Expansion Approach
The density matrix expansion is used to derive a local energy density
functional for finite range interactions with a realistic meson exchange
structure. Exchange contributions are treated in a local momentum
approximation. A generalized Slater approximation is used for the density
matrix where an effective local Fermi momentum is chosen such that the next to
leading order off-diagonal term is canceled. Hartree-Fock equations are derived
incorporating the momentum structure of the underlying finite range
interaction. For applications a density dependent effective interaction is
determined from a G-matrix which is renormalized such that the saturation
properties of symmetric nuclear matter are reproduced. Intending applications
to systems far off stability special attention is paid to the low density
regime and asymmetric nuclear matter. Results are compared to predictions
obtained from Skyrme interactions. The ground state properties of stable nuclei
are well reproduced without further adjustments of parameters. The potential of
the approach is further exemplified in calculations for A=100...140 tin
isotopes. Rather extended neutron skins are found beyond 130Sn corresponding to
solid layers of neutron matter surrounding a core of normal composition.Comment: Revtex, 29 pages including 14 eps figures, using epsfig.st
alpha-nucleus potentials for the neutron-deficient p nuclei
alpha-nucleus potentials are one important ingredient for the understanding
of the nucleosynthesis of heavy neutron-deficient p nuclei in the astrophysical
gamma-process where these p nuclei are produced by a series of (gamma,n),
(gamma,p), and (gamma,alpha) reactions. I present an improved alpha-nucleus
potential at the astrophysically relevant sub-Coulomb energies which is derived
from the analysis of alpha decay data and from a previously established
systematic behavior of double-folding potentials.Comment: 6 pages, 3 figures, accepted for publication in Phys. Rev.
Spectroscopic factors for bound s-wave states derived from neutron scattering lengths
A simple and model-independent method is described to derive neutron
single-particle spectroscopic factors of bound s-wave states in nuclei from neutron scattering lengths. Spectroscopic factors
for the nuclei ^{13}C, ^{14}C, ^{16}N, ^{17}O, ^{19}O, ^{23}Ne, ^{37}Ar, and
^{41}Ar are compared to results derived from transfer experiments using the
well-known DWBA analysis and to shell model calculations. The scattering length
of ^{14}C is calculated from the ^{15}C_{g.s.} spectroscopic factor.Comment: 9 pages (uses revtex), no figures, accepted for publication in PRC,
uuencoded tex-files and postscript-files available at
ftp://is1.kph.tuwien.ac.at/pub/ohu/Thermal.u
Optical model potentials involving loosely bound p-shell nuclei around 10 MeV/A
We present the results of a search for optical model potentials for use in
the description of elastic scattering and transfer reactions involving stable
and radioactive p-shell nuclei. This was done in connection with our program to
use transfer reactions to obtain data for nuclear astrophysics, in particular
for the determination of the astrophysical S_17 factor for 7Be(p,\gamma)8B
using two (7Be,8B) proton transfer reactions. Elastic scattering was measured
using 7Li, 10B, 13C and 14N projectiles on 9Be and 13C targets at or about
E/A=10 MeV/nucleon. Woods-Saxon type optical model potentials were extracted
and are compared with potentials obtained from a microscopic double folding
model. We use these results to find optical model potentials for unstable
nuclei with emphasis on the reliability of the description they provide for
peripheral proton transfer reactions. We discuss the uncertainty introduced by
the procedure in the prediction of the DWBA cross sections for the (7Be,8B)
reactions used in extracting the astrophysical factor S_17(0).Comment: 16 pages, LaTEX file, 9 figures (PostScript files
- …
