413 research outputs found

    Molecular states associated with dysfunction and graft loss in heart transplants.

    Get PDF
    BACKGROUND: We explored the changes in gene expression correlating with dysfunction and graft failure in endomyocardial biopsies. METHODS: Genome-wide microarrays (19,462 genes) were used to define mRNA changes correlating with dysfunction (left ventricular ejection fraction [LVEF] ≤ 55) and risk of graft loss within 3 years postbiopsy. LVEF data was available for 1,013 biopsies and survival data for 779 patients (74 losses). Molecular classifiers were built for predicting dysfunction (LVEF ≤ 55) and postbiopsy 3-year survival. RESULTS: Dysfunction is correlated with dedifferentiation-decreased expression of normal heart transcripts, for example, solute carriers, along with increased expression of inflammation genes. Many genes with reduced expression in dysfunction were matrix genes such as fibulin 1 and decorin. Gene ontology (GO) categories suggested matrix remodeling and inflammation, not rejection. Genes associated with the risk of failure postbiopsy overlapped dysfunction genes but also included genes affecting microcirculation, for example, arginase 2, which reduces NO production, and endothelin 1. GO terms also reflected increased glycolysis and response to hypoxia, but decreased VEGF and angiogenesis pathways. T cell-mediated rejection was associated with reduced survival and antibody-mediated rejection with relatively good survival, but the main determinants of survival were features of parenchymal injury. Both dysfunction and graft loss were correlated with increased biopsy expression of BNP (gene NPPB). Survival probability classifiers divided hearts into risk quintiles, with actuarial 3-year postbiopsy survival >95% for the highest versus 50% for the lowest. CONCLUSIONS: Dysfunction in transplanted hearts reflects dedifferentiation, decreased matrix genes, injury, and inflammation. The risk of short-term loss includes these changes but is also associated with microcirculation abnormalities, glycolysis, and response to hypoxia

    Microaxial Flow Left Ventricular Assist Device as a Bridge to Transplantation after LVAD Malfunction

    Get PDF
    Evolving technology and improvements in the design of modern, continuous-flow left ventricular assist devices have substantially reduced the rate of device malfunction. As the number of implanted devices increases and as survival prospects for patients with a device continue to improve, device malfunction is an increasingly common clinical challenge. Here, we present our initial experience with an endovascular microaxial flow left ventricular assist device as a successful bridge to transplantation in a 54-year-old man who experienced left ventricular assist device malfunction

    Effects of Older Donor Age and Cold Ischemic Time on Long-Term Outcomes of Heart Transplantation

    Get PDF
    Using older donor hearts in cardiac transplantation may lead to inferior outcomes: older donors have more comorbidities that reduce graft quality, including coronary artery disease, hypertension, diabetes mellitus, and dyslipidemia. Shorter cold ischemic times might overcome the detrimental effect of older donor age. We examined the relationship between donor allograft age and cold ischemic time on the long-term outcomes of heart transplant recipients. rom 1994 through 2010, surgeons at our hospital performed 745 heart transplantations. We retrospectively classified these cases by donor ages of(younger) and ≥50 years (older), then by cold ischemic times of(short), 120 to 240 min (intermediate), and \u3e240 min (long). Endpoints included recipient and graft survival, and freedom from cardiac allograft vasculopathy, nonfatal major adverse cardiac events, and rejection. For intermediate ischemic times, the 5-year recipient survival rate was lower when donors were older (70% vs 82.6%

    SWiss Atorvastatin and Interferon Beta-1b Trial In Multiple Sclerosis (SWABIMS) - rationale, design and methodology

    Get PDF
    BACKGROUND: Statins have anti-inflammatory and immunomodulatory properties in addition to their lipid-lowering effects. Currently, the effects of statins on multiple sclerosis are still controversial. Therefore, randomized clinical trials are needed to provide better evidence on the therapeutic potential of statins in multiple sclerosis. The SWiss Atorvastatin and Interferon Beta-1b trial in Multiple Sclerosis (SWABIMS) evaluates the efficacy, safety and tolerability of atorvastatin 40 mg per os daily and subcutaneous interferon beta-1b every other day compared to monotherapy with subcutaneous interferon beta-1b every other day in patients with relapsing-remitting multiple sclerosis. METHODS/DESIGN: SWABIMS is a multi-centre, randomized, parallel-group, rater-blinded, Phase IIb-study conducted in eight hospitals in Switzerland. 80 treatment naïve patients with relapsing-remitting forms of multiple sclerosis will receive subcutaneous interferon beta-1b for three months. Afterwards, they are randomized into two equal-sized parallel arms, receiving atorvastatin 40 mg/d or not in addition to interferon beta-1b for another 12 months. Disease activity measured by the proportion of patients with new T2 lesions is the primary endpoint. DISCUSSION: SWABIMS is designed to give further information about the therapeutic effect of atorvastatin 40 mg per os daily as add-on therapy to interferon beta-1b in patients with relapsing-remitting multiple sclerosis. Furthermore important safety and tolerability data will be generated. TRIAL REGISTRATION: http://www.clinicaltrials.gov. Identifier: NCT00942591; Swissmedic reference number: 2005DR2119

    Convenient method for resolving degeneracies due to symmetry of the magnetic susceptibility tensor and its application to pseudo contact shift-based protein–protein complex structure determination

    Get PDF
    Pseudo contact shifts (PCSs) induced by paramagnetic lanthanide ions fixed in a protein frame provide long-range distance and angular information, and are valuable for the structure determination of protein–protein and protein–ligand complexes. We have been developing a lanthanide-binding peptide tag (hereafter LBT) anchored at two points via a peptide bond and a disulfide bond to the target proteins. However, the magnetic susceptibility tensor displays symmetry, which can cause multiple degenerated solutions in a structure calculation based solely on PCSs. Here we show a convenient method for resolving this degeneracy by changing the spacer length between the LBT and target protein. We applied this approach to PCS-based rigid body docking between the FKBP12-rapamycin complex and the mTOR FRB domain, and demonstrated that degeneracy could be resolved using the PCS restraints obtained from two-point anchored LBT with two different spacer lengths. The present strategy will markedly increase the usefulness of two-point anchored LBT for protein complex structure determination
    corecore