20,287 research outputs found

    Applicability valuation for evaluation of surface deflection in automotive outer panels

    Get PDF
    Upon unloading in a forming process there is elastic recovery, which is the release of the elastic strains and the redistribution of the residual stresses through the thickness direction, thus producing surface deflection. It causes changes in shape and dimensions that can create major problem in the external appearance of outer panels. Thus surface deflection prediction is an important issue in sheet metal forming industry. Many factors could affect surface deflection in the process, such as material variations in mechanical properties, sheet thickness, tool geometry, processing parameters and lubricant condition. The shape and dimension problem in press forming is defined as a trouble mainly caused by the elastic recovery of materials during the forming. The use of high strength steel sheets in the manufacturing of automobile outer panels has increased in the automotive industry over the years because of its lightweight and fuel-efficient improvement. But one of the major concerns of stamping is surface deflection in the formed outer panels. Hence, to be cost effective, accurate prediction must be made of its formability. The automotive industry places rigi

    Far Ultraviolet Observations of the Dwarf Nova VW Hyi in Quiescence

    Full text link
    We present a 904-1183 A spectrum of the dwarf nova VW Hydri taken with the Far Ultraviolet Spectroscopic Explorer during quiescence, eleven days after a normal outburst, when the underlying white dwarf accreter is clearly exposed in the far ultraviolet. However, model fitting show that a uniform temperature white dwarf does not reproduce the overall spectrum, especially at the shortest wavelengths. A better approximation to the spectrum is obtained with a model consisting of a white dwarf and a rapidly rotating ``accretion belt''. The white dwarf component accounts for 83% of the total flux, has a temperature of 23,000K, a v sin i = 400 km/s, and a low carbon abundance. The best-fit accretion belt component accounts for 17% of the total flux, has a temperature of about 48,000-50,000K, and a rotation rate Vrot sin i around 3,000-4,000 km/s. The requirement of two components in the modeling of the spectrum of VW Hyi in quiescence helps to resolve some of the differences in interpretation of ultraviolet spectra of VW Hyi in quiescence. However, the physical existence of a second component (and its exact nature) in VW Hyi itself is still relatively uncertain, given the lack of better models for spectra of the inner disk in a quiescent dwarf nova.Comment: 6 figures, 10 printed page in the journal, to appear in APJ, 1 Sept. 2004 issue, vol. 61

    Directed flow of neutral strange particles at AGS

    Get PDF
    Directed flow of neutral strange particles in heavy ion collisions at AGS is studied in the ART transport model. Using a lambda mean-field potential which is 2/3 of that for a nucleon as predicted by the constituent quark model, lambdas are found to flow with protons but with a smaller flow parameter as observed in experiments. For kaons, their repulsive potential, which is calculated from the impulse approximation using the measured kaon-nucleon scattering length, leads to a smaller anti-flow than that shown in the preliminary E895 data. Implications of this discrepancy are discussed.Comment: 6 pages, 2 figure

    Partonic effects on anisotropic flows at RHIC

    Full text link
    We report recent results from a multiphase transport (AMPT) model on the azimuthal anisotropies of particle momentum distributions in heavy ion collisions at the Relativistic Heavy Ion Collider. These include higher-order anisotropic flows and their scaling, the rapidity dependence of anisotropic flows, and the elliptic flow of charm quarks.Comment: 7 pages, 5 figures, talk given at "Hot Quarks 2004", July 18-24, 2004, Taos Valley, NM, US

    Nuclear symmetry potential in the relativistic impulse approximation

    Get PDF
    Using the relativistic impulse approximation with the Love-Franey \textsl{NN} scattering amplitude developed by Murdock and Horowitz, we investigate the low-energy (100 MeV≤Ekin≤400\leq E_{\mathrm{kin}}\leq 400 MeV) behavior of the nucleon Dirac optical potential, the Schr\"{o}dinger-equivalent potential, and the nuclear symmetry potential in isospin asymmetric nuclear matter. We find that the nuclear symmetry potential at fixed baryon density decreases with increasing nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. Furthermore,the obtained energy and density dependence of the nuclear symmetry potential is consistent with those of the isospin- and momentum-dependent MDI interaction with x=0x=0, which has been found to describe reasonably both the isospin diffusion data from heavy-ion collisions and the empirical neutron-skin thickness of 208^{208} Pb.Comment: 8 pages, 5 figures, revised version to appear in PR

    Phase Response Curves of Coupled Oscillators

    Full text link
    Many real oscillators are coupled to other oscillators and the coupling can affect the response of the oscillators to stimuli. We investigate phase response curves (PRCs) of coupled oscillators. The PRCs for two weakly coupled phase-locked oscillators are analytically obtained in terms of the PRC for uncoupled oscillators and the coupling function of the system. Through simulation and analytic methods, the PRCs for globally coupled oscillators are also discussed.Comment: 5 pages 4 figur

    E-QED: Electrical Bug Localization During Post-Silicon Validation Enabled by Quick Error Detection and Formal Methods

    Full text link
    During post-silicon validation, manufactured integrated circuits are extensively tested in actual system environments to detect design bugs. Bug localization involves identification of a bug trace (a sequence of inputs that activates and detects the bug) and a hardware design block where the bug is located. Existing bug localization practices during post-silicon validation are mostly manual and ad hoc, and, hence, extremely expensive and time consuming. This is particularly true for subtle electrical bugs caused by unexpected interactions between a design and its electrical state. We present E-QED, a new approach that automatically localizes electrical bugs during post-silicon validation. Our results on the OpenSPARC T2, an open-source 500-million-transistor multicore chip design, demonstrate the effectiveness and practicality of E-QED: starting with a failed post-silicon test, in a few hours (9 hours on average) we can automatically narrow the location of the bug to (the fan-in logic cone of) a handful of candidate flip-flops (18 flip-flops on average for a design with ~ 1 Million flip-flops) and also obtain the corresponding bug trace. The area impact of E-QED is ~2.5%. In contrast, deter-mining this same information might take weeks (or even months) of mostly manual work using traditional approaches
    • …
    corecore