29 research outputs found

    Genetic Variants in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis: A Bayesian Approach and Systematic Review.

    Get PDF
    A number of genome-wide association studies (GWASs) and meta-analyses of genetic variants have been performed in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. We reinterpreted previous studies using false-positive report probability (FPRP) and Bayesian false discovery probability (BFDP). This study searched publications in PubMed and Excerpta Medica Database (EMBASE) up to February 2018. Identification of noteworthy associations were analyzed using FPRP and BFDP, and data (i.e., odds ratio (OR), 95% confidence interval (CI), p-value) related to significant associations were separately extracted. Using filtered gene variants, gene ontology (GO) enrichment analysis and protein⁻protein interaction (PPI) networks were performed. Overall, 241 articles were identified, and 7 were selected for analysis. Single nucleotide polymorphisms (SNPs) discovered by GWASs were shown to be noteworthy, whereas only 27% of significant results from meta-analyses of observational studies were noteworthy. Eighty-five percent of SNPs with borderline p-values (5.0 × 10-8 < p < 0.05) in GWASs were found to be noteworthy. No overlapping SNPs were found between PR3-ANCA and MPO-ANCA vasculitis. GO analysis revealed immune-related GO terms, including "antigen processing and presentation of peptide or polysaccharide antigen via major histocompatibility complex (MHC) class II", "interferon-gamma-mediated (IFN-γ) signaling pathway". By using FPRP and BFDP, network analysis of noteworthy genetic variants discovered genetic risk factors associated with the IFN-γ pathway as novel mechanisms potentially implicated in the complex pathogenesis of ANCA-associated vasculitis

    Systematic Approach for Drug Repositioning of Anti-Epileptic Drugs

    No full text
    Epilepsy is a central neurological disorder affecting individuals of all ages and causing unpredictable seizures. In spite of the improved efficacy of new antiepileptic drugs and novel therapy, there are still approximately 20%~30% of patients, who have either intractable or uncontrolled seizures. The epilepsy drug&ndash;target network (EDT) is constructed and successfully demonstrates the characteristics and efficacy of popularly used AEDs through the identification of causative genes for 60 epilepsy patients. We discovered that the causative genes of most intractable patients were not the targets of existing AEDs, as well as being very far from the etiological mechanisms of existing AEDs in the functional networks. We show that the existence of new drugs that target the causative genes of intractable epilepsy patients, which will be potential candidates for refractory epilepsy patients. Our systematic approach demonstrates a new possibility for drug repositioning through the combination of the drug-target and functional networks

    mySyntenyPortal: an application package to construct websites for synteny block analysis

    No full text
    Abstract Background Advances in sequencing technologies have facilitated large-scale comparative genomics based on whole genome sequencing. Constructing and investigating conserved genomic regions among multiple species (called synteny blocks) are essential in the comparative genomics. However, they require significant amounts of computational resources and time in addition to bioinformatics skills. Many web interfaces have been developed to make such tasks easier. However, these web interfaces cannot be customized for users who want to use their own set of genome sequences or definition of synteny blocks. Results To resolve this limitation, we present mySyntenyPortal, a stand-alone application package to construct websites for synteny block analyses by using users’ own genome data. mySyntenyPortal provides both command line and web-based interfaces to build and manage websites for large-scale comparative genomic analyses. The websites can be also easily published and accessed by other users. To demonstrate the usability of mySyntenyPortal, we present an example study for building websites to compare genomes of three mammalian species (human, mouse, and cow) and show how they can be easily utilized to identify potential genes affected by genome rearrangements. Conclusions mySyntenyPortal will contribute for extended comparative genomic analyses based on large-scale whole genome sequences by providing unique functionality to support the easy creation of interactive websites for synteny block analyses from user’s own genome data

    ID1-Mediated BMP Signaling Pathway Potentiates Glucagon-Like Peptide-1 Secretion in Response to Nutrient Replenishment

    No full text
    Glucagon-like peptide-1 (GLP-1) is a well-known incretin hormone secreted from enteroendocrinal L cells in response to nutrients, such as glucose and dietary fat, and controls glycemic homeostasis. However, the detailed intracellular mechanisms of how L cells control GLP-1 secretion in response to nutrients still remain unclear. Here, we report that bone morphogenetic protein (BMP) signaling pathway plays a pivotal role to control GLP-1 secretion in response to nutrient replenishment in well-established mouse enteroendocrinal L cells (GLUTag cells). Nutrient starvation dramatically reduced cellular respiration and GLP-1 secretion in GLUTag cells. Transcriptome analysis revealed that nutrient starvation remarkably reduced gene expressions involved in BMP signaling pathway, whereas nutrient replenishment rescued BMP signaling to potentiate GLP-1 secretion. Transient knockdown of inhibitor of DNA binding (ID)1, a well-known target gene of BMP signaling, remarkably reduced GLP-1 secretion. Consistently, LDN193189, an inhibitor of BMP signaling, markedly reduced GLP-1 secretion in L cells. In contrast, BMP4 treatment activated BMP signaling pathway and potentiated GLP-1 secretion in response to nutrient replenishment. Altogether, we demonstrated that BMP signaling pathway is a novel molecular mechanism to control GLP-1 secretion in response to cellular nutrient status. Selective activation of BMP signaling would be a potent therapeutic strategy to stimulate GLP-1 secretion in order to restore glycemic homeostasis

    Reference-based read clustering improves the de novo genome assembly of microbial strains

    No full text
    Constructing accurate microbial genome assemblies is necessary to understand genetic diversity in microbial genomes and its functional consequences. However, it still remains as a challenging task especially when only short-read sequencing technologies are used. Here, we present a new read-clustering algorithm, called RBRC, for improving de novo microbial genome assembly, by accurately estimating read proximity using multiple reference genomes. The performance of RBRC was confirmed by simulation-based evaluation in terms of assembly contiguity and the number of misassemblies, and was successfully applied to existing fungal and bacterial genomes by improving the quality of the assemblies without using additional sequencing data. RBRC is a very useful read-clustering algorithm that can be used (i) for generating high-quality genome assemblies of microbial strains when genome assemblies of related strains are available, and (ii) for upgrading existing microbial genome assemblies when the generation of additional sequencing data, such as long reads, is difficult
    corecore