27,214 research outputs found

    Muon anomalous magnetic moment from effective supersymmetry

    Full text link
    We present a detailed analysis on the possible maximal value of the muon (g-2) (= 2 a_mu) within the context of effective SUSY models with R parity conservation. First of all, the mixing among the second and the third family sleptons can contribute at one loop level to the a_mu(SUSY) and tau -> mu gamma simultaneously. One finds that the a_mu(SUSY) can be as large as (10-20)*10^-10 for any tan beta, imposing the upper limit on the tau -> mu gamma branching ratio. Furthermore, the two-loop Barr-Zee type contributions to a_mu(SUSY) can be significant for large tan beta, if a stop is light and mu and A_t are large enough (O(1) TeV). In this case, it is possible to have a_mu(SUSY) upto O(10)*10^-10 without conflicting with tau -> l gamma. We conclude that the possible maximal value for a_mu(SUSY) is about 20*10^-10 for any tan beta. Therefore the BNL experiment on the muon a_mu can exclude the effective SUSY models only if the measured deviation is larger than \sim 30*10^-10.Comment: 10 pages, 3 figure

    Studying Diquark Structure of Heavy Baryons in Relativistic Heavy Ion Collisions

    Full text link
    We propose the enhancement of Λc\Lambda_c yield in heavy ion collisions at RHIC and LHC as a novel signal for the existence of diquarks in the strongly coupled quark-gluon plasma produced in these collisions as well as in the Λc\Lambda_c. Assuming that stable bound diquarks can exist in the quark-gluon plasma, we argue that the yield of Λc\Lambda_c would be increased by two-body collisions between udud diquarks and cc quarks, in addition to normal three-body collisions among uu, dd and cc quarks. A quantitative study of this effect based on the coalescence model shows that including the contribution of diquarks to Λc\Lambda_c production indeed leads to a substantial enhancement of the Λc/D\Lambda_c/D ratio in heavy ion collisions.Comment: Prepared for Chiral Symmetry in Hadron and Nuclear Physics (Chiral07), Nov. 13-16, 2007, Osaka, Japa

    Design improvement of a pump wear ring labyrinth seal

    Get PDF
    The investigation was successful in obtaining two improved designs for the impeller wear ring seal of the liquid hydrogen turbopump of interest. A finite difference computer code was extensively used in a parametric computational study in determining a cavity configuration with high flow resistance due to turbulence dissipation. These two designs, along with that currently used, were fabricated and tested. The improved designs were denoted Type O and Type S. The measurements showed that Type O and Type S given 67 and 30 percent reduction in leakage over the current design, respectively. It was found that the number of cavities, the step height and the presence of a small stator groove are quite important design features. Also, the tooth thickness is of some significance. Finally, the tooth height and an additional large cavity cut out from the stator (upstream of the step) are of negligible importance
    corecore