24 research outputs found

    Prediction of evolutionarily conserved interologs in Mus musculus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of protein-protein interactions is an important first step to understand living systems. High-throughput experimental approaches have accumulated large amount of information on protein-protein interactions in human and other model organisms. Such interaction information has been successfully transferred to other species, in which the experimental data are limited. However, the annotation transfer method could yield false positive interologs due to the lack of conservation of interactions when applied to phylogenetically distant organisms.</p> <p>Results</p> <p>To address this issue, we used phylogenetic profile method to filter false positives in interologs based on the notion that evolutionary conserved interactions show similar patterns of occurrence along the genomes. The approach was applied to <it>Mus musculus</it>, in which the experimentally identified interactions are limited. We first inferred the protein-protein interactions in <it>Mus musculus </it>by using two approaches: i) identifying mouse orthologs of interacting proteins (interologs) based on the experimental protein-protein interaction data from other organisms; and ii) analyzing frequency of mouse ortholog co-occurrence in predicted operons of bacteria. We then filtered possible false-positives in the predicted interactions using the phylogenetic profiles. We found that this filtering method significantly increased the frequency of interacting protein-pairs coexpressed in the same cells/tissues in gene expression omnibus (GEO) database as well as the frequency of interacting protein-pairs shared the similar Gene Ontology (GO) terms for biological processes and cellular localizations. The data supports the notion that phylogenetic profile helps to reduce the number of false positives in interologs.</p> <p>Conclusion</p> <p>We have developed protein-protein interaction database in mouse, which contains 41109 interologs. We have also developed a web interface to facilitate the use of database <url>http://lgsun.grc.nia.nih.gov/mppi/</url>.</p

    Transcript copy number estimation using a mouse whole-genome oligonucleotide microarray

    Get PDF
    The ability to quantitatively measure the expression of all genes in a given tissue or cell with a single assay is an exciting promise of gene-expression profiling technology. An in situ-synthesized 60-mer oligonucleotide microarray designed to detect transcripts from all mouse genes was validated, as well as a set of exogenous RNA controls derived from the yeast genome (made freely available without restriction), which allow quantitative estimation of absolute endogenous transcript abundance

    Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Target genes of a transcription factor (TF) <it>Pou5f1 </it>(<it>Oct3/4 </it>or <it>Oct4</it>), which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES) cells, have previously been identified based on their response to <it>Pou5f1 </it>manipulation and occurrence of Chromatin-immunoprecipitation (ChIP)-binding sites in promoters. However, many responding genes with binding sites may not be direct targets because response may be mediated by other genes and ChIP-binding site may not be functional in terms of transcription regulation.</p> <p>Results</p> <p>To reduce the number of false positives, we propose to separate responding genes into groups according to direction, magnitude, and time of response, and to apply the false discovery rate (FDR) criterion to each group individually. Using this novel algorithm with stringent statistical criteria (FDR < 0.2) to a compendium of published and new microarray data (3, 6, 12, and 24 hr after <it>Pou5f1 </it>suppression) and published ChIP data, we identified 420 tentative target genes (TTGs) for <it>Pou5f1</it>. The majority of TTGs (372) were down-regulated after <it>Pou5f1 </it>suppression, indicating that the <it>Pou5f1 </it>functions as an activator of gene expression when it binds to promoters. Interestingly, many activated genes are potent suppressors of transcription, which include polycomb genes, zinc finger TFs, chromatin remodeling factors, and suppressors of signaling. Similar analysis showed that <it>Sox2 </it>and <it>Nanog </it>also function mostly as transcription activators in cooperation with <it>Pou5f1</it>.</p> <p>Conclusion</p> <p>We have identified the most reliable sets of direct target genes for key pluripotency genes – <it>Pou5f1</it>, <it>Sox2</it>, and <it>Nanog</it>, and found that they predominantly function as activators of downstream gene expression. Thus, most genes related to cell differentiation are suppressed indirectly.</p

    Effects of aging and calorie restriction on the global gene expression profiles of mouse testis and ovary

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aging of reproductive organs is not only a major social issue, but of special interest in aging research. A long-standing view of 'immortal germ line versus mortal soma' poses an important question of whether the reproductive tissues age in similar ways to the somatic tissues. As a first step to understand this phenomenon, we examine global changes in gene expression patterns by DNA microarrays in ovaries and testes of C57BL/6 mice at 1, 6, 16, and 24 months of age. In addition, we compared a group of mice on <it>ad libitum </it>(AL) feeding with a group on lifespan-extending 40% calorie restriction (CR).</p> <p>Results</p> <p>We found that gene expression changes occurred in aging gonads, but were generally different from those in somatic organs during aging. For example, only two functional categories of genes previously associated with aging in muscle, kidney, and brain were confirmed in ovary: genes associated with complement activation were upregulated, and genes associated with mitochondrial electron transport were downregulated. The bulk of the changes in gonads were mostly related to gonad-specific functions. Ovaries showed extensive gene expression changes with age, especially in the period when ovulation ceases (from 6 to 16 months), whereas testes showed only limited age-related changes. The same trend was seen for the effects of CR: CR-mediated reversal of age-associated gene expression changes, reported in somatic organs previously, was limited to a small number of genes in gonads. Instead, in both ovary and testis, CR caused small and mostly gonad-specific effects: suppression of ovulation in ovary and activation of testis-specific genes in testis.</p> <p>Conclusion</p> <p>Overall, the results are consistent with unique modes of aging and its modification by CR in testis and ovary.</p

    Comparative transcriptome analysis of embryonic and adult stem cells with extended and limited differentiation capacity

    Get PDF
    Comparison of the transcriptomes of pluripotent embryonic stem cells, multipotent adult progenitor cells and lineage restricted mesenchymal stem cells identified a unique gene expression profile of multipotent adult progenitor cells

    Responsiveness of genes to manipulation of transcription factors in ES cells is associated with histone modifications and tissue specificity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In addition to determining static states of gene expression (high vs. low), it is important to characterize their dynamic status. For example, genes with H3K27me3 chromatin marks are not only suppressed but also poised for activation. However, the responsiveness of genes to perturbations has never been studied systematically. To distinguish gene responses to specific factors from responsiveness in general, it is necessary to analyze gene expression profiles of cells responding to a large variety of disturbances, and such databases did not exist before.</p> <p>Results</p> <p>We estimated the responsiveness of all genes in mouse ES cells using our recently published database on expression change after controlled induction of 53 transcription factors (TFs) and other genes. Responsive genes (<it>N </it>= 4746), which were readily upregulated or downregulated depending on the kind of perturbation, mostly have regulatory functions and a propensity to become tissue-specific upon differentiation. Tissue-specific expression was evaluated on the basis of published (GNF) and our new data for 15 organs and tissues. Non-responsive genes (<it>N </it>= 9562), which did not change their expression much following any perturbation, were enriched in housekeeping functions. We found that TF-responsiveness in ES cells is the best predictor known for tissue-specificity in gene expression. Among genes with CpG islands, high responsiveness is associated with H3K27me3 chromatin marks, and low responsiveness is associated with H3K36me3 chromatin, stronger tri-methylation of H3K4, binding of E2F1, and GABP binding motifs in promoters.</p> <p>Conclusions</p> <p>We thus propose the responsiveness of expression to perturbations as a new way to define the dynamic status of genes, which brings new insights into mechanisms of regulation of gene expression and tissue specificity.</p

    Dkk4 and Eda Regulate Distinctive Developmental Mechanisms for Subtypes of Mouse Hair

    Get PDF
    The mouse hair coat comprises protective “primary” and thermo-regulatory “secondary” hairs. Primary hair formation is ectodysplasin (Eda) dependent, but it has been puzzling that Tabby (Eda-/y) mice still make secondary hair. We report that Dickkopf 4 (Dkk4), a Wnt antagonist, affects an auxiliary pathway for Eda-independent development of secondary hair. A Dkk4 transgene in wild-type mice had no effect on primary hair, but secondary hairs were severely malformed. Dkk4 action on secondary hair was further demonstrated when the transgene was introduced into Tabby mice: the usual secondary follicle induction was completely blocked. The Dkk4-regulated secondary hair pathway, like the Eda-dependent primary hair pathway, is further mediated by selective activation of Shh. The results thus reveal two complex molecular pathways that distinctly regulate subtype-based morphogenesis of hair follicles, and provide a resolution for the longstanding puzzle of hair formation in Tabby mice lacking Eda
    corecore