277 research outputs found

    A Simultaneous Perturbation Stochastic Approximation (SPSA)-Based Model Approximation and its Application for Power System Stabilizers

    Get PDF
    Abstract: This paper presents an intelligent model; named as free model, approach for a closedloop system identification using input and output data and its application to design a power system stabilizer (PSS). The free model concept is introduced as an alternative intelligent system technique to design a controller for such dynamic system, which is complex, difficult to know, or unknown, with input and output data only, and it does not require the detail knowledge of mathematical model for the system. In the free model, the data used has incremental forms using backward difference operators. The parameters of the free model can be obtained by simultaneous perturbation stochastic approximation (SPSA) method. A linear transformation is introduced to convert the free model into a linear model so that a conventional linear controller design method can be applied. In this paper, the feasibility of the proposed method is demonstrated in a one-machine infinite bus power system. The linear quadratic regulator (LQR) method is applied to the free model to design a PSS for the system, and compared with the conventional PSS. The proposed SPSA-based LQR controller is robust in different loading conditions and system failures such as the outage of a major transmission line or a three phase to ground fault which causes the change of the system structure

    Strain-gradient-induced magnetic anisotropy in straight-stripe mixed-phase bismuth ferrites: An insight into flexomagnetic phenomenon

    Full text link
    Implementation of antiferromagnetic compounds as active elements in spintronics has been hindered by their insensitive nature against external perturbations which causes difficulties in switching among different antiferromagnetic spin configurations. Electrically-controllable strain gradient can become a key parameter to tune the antiferromagnetic states of multiferroic materials. We have discovered a correlation between an electrically-written straight-stripe mixed-phase boundary and an in-plane antiferromagnetic spin axis in highly-elongated La-5%-doped BiFeO3_{3} thin films by performing polarization-dependent photoemission electron microscopy in conjunction with cluster model calculations. Model Hamiltonian calculation for the single-ion anisotropy including the spin-orbit interaction has been performed to figure out the physical origin of the link between the strain gradient present in the mixed phase area and its antiferromagnetic spin axis. Our findings enable estimation of the strain-gradient-induced magnetic anisotropy energy per Fe ion at around 5×\times1012^{-12} eV m, and provide a new pathway towards an electric-field-induced 90^{\circ} rotation of antiferromagnetic spin axis at room temperature by flexomagnetism.Comment: 32 pages, 5 figure

    Early fire detection algorithm based on irregular patterns of flames and hierarchical

    Get PDF
    a b s t r a c t This paper proposes a new vision-based early fire detection method for real-world application. First, candidate fire regions are detected using a background and color model of fire. Probabilistic models of the fire are then generated based on the fact that fire pixel values in consecutive frames change constantly. These models are then applied to Bayesian Networks. This paper uses hierarchical Bayesian Networks that contain intermediate nodes. Four probability density functions for evidence at each node are used. The probability density functions for each node are modeled using the skewness of the color red, and three high frequencies obtained from a wavelet transform. The proposed system was successfully applied to various fire-detection tasks in real-world environments, and it effectively distinguished fire from fire-colored moving objects

    Cellular stress-induced up-regulation of FMRP promotes cell survival by modulating PI3K-Akt phosphorylation cascades

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fragile X syndrome (FXS), the most commonly inherited mental retardation and single gene cause of autistic spectrum disorder, occurs when the Fmr1 gene is mutated. The product of Fmr1, fragile X linked mental retardation protein (FMRP) is widely expressed in HeLa cells, however the roles of FMRP within HeLa cells were not elucidated, yet. Interacting with a diverse range of mRNAs related to cellular survival regulatory signals, understanding the functions of FMRP in cellular context would provide better insights into the role of this interesting protein in FXS. Using HeLa cells treated with etoposide as a model, we tried to determine whether FMRP could play a role in cell survival.</p> <p>Methods</p> <p>Apoptotic cell death was induced by etoposide treatment on Hela cells. After we transiently modulated FMRP expression (silencing or enhancing) by using molecular biotechnological methods such as small hairpin RNA virus-induced knock down and overexpression using transfection with FMRP expression vectors, cellular viability was measured using propidium iodide staining, TUNEL staining, and FACS analysis along with the level of activation of PI3K-Akt pathway by Western blot. Expression level of FMRP and apoptotic regulator BcL-xL was analyzed by Western blot, RT-PCR and immunocytochemistry.</p> <p>Results</p> <p>An increased FMRP expression was measured in etoposide-treated HeLa cells, which was induced by PI3K-Akt activation. Without FMRP expression, cellular defence mechanism via PI3K-Akt-Bcl-xL was weakened and resulted in an augmented cell death by etoposide. In addition, FMRP over-expression lead to the activation of PI3K-Akt signalling pathway as well as increased FMRP and BcL-xL expression, which culminates with the increased cell survival in etoposide-treated HeLa cells.</p> <p>Conclusions</p> <p>Taken together, these results suggest that FMRP expression is an essential part of cellular survival mechanisms through the modulation of PI3K, Akt, and Bcl-xL signal pathways.</p

    A Novel Defined TLR3 Agonist as an Effective Vaccine Adjuvant

    Get PDF
    Synthetic double-stranded RNA analogs recognized by Toll-like receptor 3 (TLR3) are an attractive adjuvant candidate for vaccines, especially against intracellular pathogens or tumors, because of their ability to enhance T cell and antibody responses. Although poly(I:C) is a representative dsRNA with potent adjuvanticity, its clinical application has been limited due to heterogeneous molecular size, inconsistent activity, poor stability, and toxicity. To overcome these limitations, we developed a novel dsRNA-based TLR3 agonist named NexaVant (NVT) by using PCR-coupled bidirectional in vitro transcription. Agarose gel electrophoresis and reverse phase-HPLC analysis demonstrated that NVT is a single 275-kDa homogeneous molecule. NVT appears to be stable since its appearance, concentration, and molecular size were unaffected under 6 months of accelerated storage conditions. Moreover, preclinical evaluation of toxicity under good laboratory practices showed that NVT is a safe substance without any signs of serious toxicity. NVT stimulated TLR3 and increased the expression of viral nucleic acid sensors TLR3, MDA-5, and RIG-1. When intramuscularly injected into C57BL/6 mice, ovalbumin (OVA) plus NVT highly increased the migration of dendritic cells (DCs), macrophages, and neutrophils into inguinal lymph node (iLN) compared with OVA alone. In addition, NVT substantially induced the phenotypic markers of DC maturation and activation including MHC-II, CD40, CD80, and CD86 together with IFN-β production. Furthermore, NVT exhibited an appropriate adjuvanticity because it elevated OVA-specific IgG, in particular, higher levels of IgG2c (Th1-type) but lower IgG1 (Th2-type). Concomitantly, NVT increased the levels of Th1-type T cells such as IFN-γ+CD4+ and IFN-γ+CD8+ cells in response to OVA stimulation. Collectively, we suggest that NVT with appropriate safety and effectiveness is a novel and promising adjuvant for vaccines, especially those requiring T cell mediated immunity such as viral and cancer vaccines

    Unilateral Trigeminal Mandibular Motor Neuropathy Caused by Tumor in the Foramen Ovale

    Get PDF
    Pure trigeminal motor neuropathy is characterized by trigeminal motor weakness without signs of trigeminal sensory or other cranial nerve involvement. We describe a 63-year-old woman with progressive weakness and atrophy of the left masticatory muscles. She had no sensory disturbance. The diagnosis of pure trigeminal motor neuropathy was made on the basis of clinical and electrophysiologic studies. Magnetic resonance imaging of the brain revealed enhancement of the enlarged mandibular branch of the trigeminal nerve coursing through the left foramen ovale. Our observations suggest that pure trigeminal motor neuropathy can be induced by a tumor

    Treatment of Keratoacanthoma with 5% Imiquimod Cream and Review of the Previous Report

    Get PDF
    Keratoacanthoma (KA) is a benign epidermal tumor, characterized by rapid and abundant growth, a tendency toward spontaneous regression and histopathologic similarity to squamous cell carcinoma (SCC). Because KA can be easily misdiagnosed as SCC, surgery is considered the treatment of choice. Recently, regression of KAs following application of 5% imiquimod cream (Aldara®) has been reported. We present 4 cases of KA treated with topical imiquimod, applied 3 to 4 times a week. Obvious improvement was observed after 4 to 6 weeks of application and the lesions were almost cleared leaving scars after 9 to 11 weeks. These results show that topical imiquimod can be an effective option for the conservative management of KA as previously reported. We also suggest that lesions treated with imiquimod cream should be considered for biopsy to judge histopathological remission after 5 to 8 weeks of application to shorten the duration of the treatment
    corecore