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Abstract: This paper presents an intelligent model; named as free model, approach for a closed-
loop system identification using input and output data and its application to design a power 
system stabilizer (PSS). The free model concept is introduced as an alternative intelligent system 
technique to design a controller for such dynamic system, which is complex, difficult to know, or 
unknown, with input and output data only, and it does not require the detail knowledge of 
mathematical model for the system. In the free model, the data used has incremental forms using 
backward difference operators. The parameters of the free model can be obtained by 
simultaneous perturbation stochastic approximation (SPSA) method. A linear transformation is 
introduced to convert the free model into a linear model so that a conventional linear controller 
design method can be applied. In this paper, the feasibility of the proposed method is 
demonstrated in a one-machine infinite bus power system. The linear quadratic regulator (LQR) 
method is applied to the free model to design a PSS for the system, and compared with the 
conventional PSS. The proposed SPSA-based LQR controller is robust in different loading 
conditions and system failures such as the outage of a major transmission line or a three phase to 
ground fault which causes the change of the system structure. 
 
Keywords: Free model, linear quadratic regulator, power system stabilization, simultaneous 
perturbation stochastic approximation. 
 

1. INTRODUCTION 
 
Traditionally, controllers are designed on the basis 

of a mathematical description of a system and its 
linearized model. Therefore, it is difficult to 
implement these model-based controllers to a real 
system, especially, to a system, which is complex and 
nonlinear such as power systems. A power system 
stabilizer (PSS) with the excitation system is the most 
common tool used to enhance the damping of low 
frequency oscillations of a power system [1,2]. 
Considerable effort has been made to design PSS for 
power systems, most of which is based on deMello 
and Concordia’s pioneering work [1]. They use a 
linearized model to find a proper set of parameters in 
a fixed structure PSS. Linear optimal control and 

modern control theories are also introduced to 
improve the dynamic performance of power systems 
under the uncertainty of power system models [3-5]. 
These techniques, however, depend on the accuracy of 
the model, which is less reliable as the power system 
becomes larger. Adaptive techniques are also 
employed in the PSS design for a wide range of 
operations [6-8]. Recently, intelligent control, so 
called artificial neural networks and fuzzy logic, has 
attracted the attention of power system engineers. 
There has been a great deal of research that reports on 
artificial neural network and fuzzy logic and its 
application to control and power systems [9-13]. 

This paper presents the free model approach for 
system identification using input and output data and 
its application to design a PSS. The free model 
concept is introduced as an alternative intelligent 
system technique to design a controller for an 
unknown dynamic system with input and output data 
only, and it does not require the knowledge of 
mathematical model for the system. The idea of free 
model comes from the Taylor series approximation, 
where an output can be estimated when such data as 
position, velocity, and acceleration are known. One of 
the techniques using only a loss function measurement 
that has attracted considerable recent attention for 
difficult multivariate problems is the simultaneous 
perturbation stochastic approximation (SPSA) method 
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introduced in Spall [14] and more fully analyzed in 
Spall [15]. SPSA is based on a highly efficient and 
easy to implement “simultaneous perturbation” 
approximation to the gradient: this gradient approxi-
mation uses only two cost function measurements 
independent of the number of parameters being 
optimized. The parameters of the free model can be 
obtained by SPSA method using the input-output data 
and a controller can be designed based on the free 
model. The free model is then transformed to a linear 
state space model and the linear quadratic regulator 
(LQR) method [16] is used to design a controller. In 
this paper, one machine infinite bus system [17,18] is 
studied to demonstrate the feasibility of the proposed 
method.  

The LQR method is applied to the free model to 
design PSS for the systems, and compared with the 
conventional PSS (CPSS). The SPSA based LQR 
controller is applied to the test systems and compared 
with the CPSS. Although no mathematical model is 
used to design the controller, the proposed controller 
is robust in different loading conditions and system 
failures such as the outage of a major transmission 
line or a three phase to ground fault. 

 
2. DESCRIPTION OF THE FREE MODEL 
 
Consider a nonlinear time-invariant discrete-time 

system, represented by 

( 1) ( ( ), ( 1), , ( ),
( ), ( 1), , ( )),

y k f y k y k y k N
u k u k u k M

+ = − −
− −

"
"

  (1) 

where ( )y k i−  and ( ),u k j− 0,1, , ,i N= " 0,1,j =  
, ,M"  denote the delayed outputs and inputs, 

respectively. 
It can be shown that the delayed signals are made of 

increments or differences. The backward difference 
operator [19,20] is defined as  
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Using the difference operator (2), the system (1) can 
be represented as  
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Equation (3) is expanded into Taylor series. 
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 and ( )O k  represents the high order 

terms.  
By subtracting ( )y k from (4), the above equation is 
represented as following:  
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The free model is then defined as following by 
neglecting high order terms:  
 

0
1 1

ˆ( 1) ( ) ( ) ( 1),
N M

i i
i i

i i
y k a y k b u k b u k

= =
∆ + = ∆ + ∆ + ∆ −∑ ∑

(5a) 
or dividing both sides with ,∆   
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where N  and M are the order of the free model for 
output and input, respectively, and ˆ( 1)y k +  denotes 
the estimate of ( 1).y k +  The remaining problem is 
how to determine parameters 0, ,ia b  and .ib  To 
determine parameters, SPSA method is applied 
[14,15]. The least squares problem is to minimize the 
loss function ( )E θ  that is a sum of squares. 

2

1
ˆmin ( ) ( ( 1) ( 1)) ,

n

i
E y k i y k iθ

=
= − + − − +∑   (6) 

where 1 0[ ]TN Ma a b bθ = " "  is the parameter 
vector of a free model and y  and ŷ  indicate the 
plant output and estimated output of a free model, 
respectively.  
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The least squares problem is to minimize the loss 
function (6) with respect to p number of parameters, 
where p = N+M+1. There a number of methods in 
solving this problem, which all require at least p 
measurement of the loss function. This may be a 
problem for a large number of parameters to estimate. 
An alternative method is the use of simultaneous 
perturbation stochastic approximation (SPSA) [15]. 
The SPSA is based on a highly efficient and easy to 
implement “simultaneous perturbation” approxima-
tion to the gradient: this gradient approximation uses 
only two cost function measurements independent of 
the number of parameters being optimized. 

 
3. SPSA BASED FREE MODEL 

APPROXIMATION 
 

3.1. The basic SPSA algorithm [15] 
The goal is to minimize a loss function ( ),L θ  

where the loss function is a scalar-valued 
“performance measure” and θ  is a continuous-
valued p -dimensional vector of parameters to be 
adjusted. The SPSA algorithm works by iterating from 
an initial guess of the optimal, where the iteration 
process depends on the above-mentioned highly 
efficient “simultaneous perturbation” approximation 
to the gradient ( ) ( ) / .g Lθ θ θ≡ ∂ ∂  

Assume that measurements of the loss function are 
available at any value of :θ  

( ) ( ) .E L noiseθ θ= +  

For example, in a Monte Carlo simulation-based 
optimization context, ( )L θ  may represent the mean 
response with input parameters ,θ  and ( )E θ may 
represent the outcome of one simulation experiment at 

.θ  In some problems, exact loss function 
measurements will be available. This corresponds to 
the 0noise =  setting (and in the simulation example, 
would correspond to a deterministic non-Monte Carlo-
simulation). Note that no direct measurements (with 
or without noise) of the gradient are assumed 
available. This measurement formulation is identical 
to that of the finite-difference stochastic approxi-
mation (FDSA) algorithm and most implementations 
of genetic optimization algorithms and simulated 
annealing. It differs from Newton-Raphson search, 
and maximum likelihood scoring, all of which require 
direct measurement or calculation of ( ).g θ  

It is assumed that ( )L θ is a differentiable function 

of θ  and that the minimum point θ ∗  corresponds 
to a zero point of the gradient, i.e., 

( )( ) 0.Lg
θ θ

θθ
θ ∗

∗

=

∂= =
∂

    (7) 

In cases where more than one point satisfies (7), 
then the algorithm may only converge to a local 
minimum (as a consequence of the basic recursive 
form of the algorithm there is generally no risk of 
converging to a maximum or saddlepoint of ( ),L θ  
i.e., to nonminimum points where ( )g θ  may equal 
zero). The modifications of basic SPSA algorithm 
allow it to search for the global solution among 
multiple local solutions. Note also that (7) is generally 
associated with unconstrained optimization; however, 
through the application of penalty function and/or 
projection methods, it is possible to use (7) in a 
constrained problem (i.e., one where the θ  values 
are not allowed to obtain certain values, usually as 
specified through equality and inequality constraints 
on the values of θ  or ( ).L θ   

The basic unconstrained SPSA algorithm is in the 
general recursive stochastic approximation (SA) form 

1
ˆ ˆ ˆˆ ( ),k k k k ka gθ θ θ+ = −     (8) 

where ˆˆ ( )k kg θ  is the simultaneous perturbation 
estimate of the gradient ( ) ( ) /g Lθ θ θ≡ ∂ ∂  at the 

iterate k̂θ  based on the measurements of the loss 
function and ka  is a nonnegative scalar gain 
coefficient. 

The essential part of (8) is the gradient 
approximation ˆˆ ( ).k kg θ  This gradient approximation 

is formed by perturbing the components of k̂θ  one at 
a time and collecting a loss measurement ( )E i  at 
each of the perturbations (in practice, the loss 
measurements are sometimes noise-free, ( ) ( )E L=i i ). 
This requires 2 p  loss measurements for a two-sided 

finite difference approximation. All elements of k̂θ  
are randomly perturbed together to obtain two loss 
measurements ( ).E i  For the two-sided simultaneous 
perturbation gradient approximation, this leads to 

1
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k k

k

kp

E c E c
g

c
θ θ

θ

−

−

−

 
 
 + ∆ − − ∆
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∆
∆

∆
#
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where the mean-zero p -dimensional random 

perturbation vector, 1 2[ , , , ]Tk k k kp∆ = ∆ ∆ ∆" , has a 

user-specified distribution and kc  is a positive scalar. 
(The notation for perturbation vector should not be 
confused with the difference operator defined in (2).) 
Because the numerator is the same in all p  
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components of ˆˆ ( ),k kg θ  the number of loss 
measurements needed to estimate the gradient in 
SPSA is two, regardless of the dimension .p  

 
3.2. The SPSA algorithm implementation for free 

model approximation 
The step-by-step summary below shows how SPSA 
iteratively produces a sequence of estimates.  

Step 1: Initialization and coefficient selection. 
Set counter index k=0. Pick initial guess 0̂θ  in (8) 

and nonnegative coefficients , , , ,a c A α  and γ  in 

the SPSA gain sequences /( 1)ka a A k α= + +  and 

/( 1) .kc c k γ= +  Practically effective (and theoretically 
valid) values for α  and γ  are 0.602 and 0.101, 
respectively. 

Step 2: Generation of simultaneous perturbation 
vector. 

Generate by Monte Carlo a p-dimensional random 
perturbation vector ,k∆  where each of the p  
components of k∆  are independently generated from 
a zero-mean probability distribution satisfying the 
conditions in Spall [15]. A simple (and theoretically 
valid) choice for each component of k∆ is to use a 
Bernoulli 1± distribution with probability of 0.5 for 
each 1±  outcome. Note that uniform and normal 
random variables are not allowed for the elements of 

k∆  by the SPSA regularity conditions since they 
have infinite inverse moments. 

Step 3: Loss function evaluations. 
Obtain two measurements of the loss function 

based on the simultaneous perturbation around the 
current ˆ :kθ  ˆ( )k k kE cθ + ∆  and ˆ( )k k kE cθ − ∆  in 
(6) with the kc and k∆ from Steps 1 and 2. 

Step 4: Gradient approximations. 
Generate the simultaneous perturbation approxi-

mation to the unknown gradient ˆˆ ( )k kg θ  according 
to (9). It is sometimes useful to average several 
gradient approximations at ˆ ,kθ  each formed from an 
independent generation of .k∆   

Step 5: Updating θ  Estimate.  
Use the standard stochastic approximation form in 

(8) to update k̂θ  to a new value 1k̂θ + . Check for 
constraint violation and modify the updated .θ  

Step 6: Iteration or Termination. 
Return to Step 2 with 1k +  replacing .k  

Terminate the algorithm if there is little change in 
several successive iterates or the maximum allowable 
number of iterations has been reached.  

The choice of the gain sequences ( ka  and )kc  is 
critical to the performance of SPSA (as with all 

stochastic optimization algorithms and the choice of 
their respective algorithm coefficients). With α and 
γ as specified in Step 1, one typically finds that in a 
high-noise setting (i.e., poor quality measurements of 

( )L θ ) it is necessary to pick a smaller a  and larger c 
than in a low-noise setting. Although the 
asymptotically optimal values of α and γ are 1.0  
and 1/6, respectively, it appears that 1.0α <  
choosing usually yields better finite-sample 
performance through maintaining a larger step size; 
hence the recommendation in Step 1 to use values (α 
and γ) that are effectively the lowest allowable 
satisfying the theoretical conditions mentioned [15]. 
In a setting where a large amount of data are likely to 
be available, it may be beneficial to convert to 
α=1and γ=1/6 at some point in the iteration process to 
take advantage of their asymptotic optimality. 

 
4. STATE SPACE REALIZATION 

AND LQR DESIGN 
 
Free model can be easily adopted to design 

controllers with conventional design method. In this 
paper, a LQR is applied to design a controller that is 
called the SPSA-based optimal controller. First, a 
linear transformation is introduced to convert the free 
model into a linear model so that the LQR design 
method can be applied [16]. The state variables are 
defined by the following linear transformation: 

1
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From the linear transformation (10), the thi state 
variable is defined by 
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where 1,2, , ,i N= "  and 0 0.β =  Solving for the 
output increments,  
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Then applying (12) into (5b) and replacing ˆ( 1)y k +  
with ( 1),y k +  
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which can be represented as the following equation: 
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Choose iβ  so that the coefficients of ( 1)iu k∆ −  
become zeros, i.e., 
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Then, (14) becomes  
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Now, it remains to derive the ( 1)ix k +  for 2.i ≥  
From the definition of the backward difference 
operator, and (11), 
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From (17) 

1
1 1

2

1
1

( 1) ( 1) ( )

( ).

i
i i

i
m

i m
m

y k x k x k

u kβ

−
− −

−

− −
=

∆ + = + −

− ∆∑
  (18) 

In (11), the state equation of the thi state variable is 
defined as  
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then by substituting (18) into (19), 

1 1 1( 1) ( 1) ( ) ( ).i i i ix k x k x k u kβ− − −+ = + − +  (20) 

By using (20) recursively, 
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Using (16), 
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for 2 i N≤ ≤                          (21) 

In a matrix form, the state-difference equations of 
the free model in (16) and (21) is then transformed 
into the following linear system: 
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In this paper, the LQR technique is applied to the 
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free model to design a power system stabilizer. The 
object of the LQR design is to determine the optimal 
control law u  which can transfer the system from its 
initial state to the final state such that a given 
performance index is minimized. The performance 
index is given in the quadratic form  

( )
0

( ) ( ) ( ) ( ) ,T T

k
J x k Qx k u k Ru k

∞

=
= +∑   (23) 

where Q  is positive semi-definite, and R  is 
positive-definite. To design the LQR controller, the 
first step is to select the weighting matrices Q  and 
R . The value R  weight inputs more than the states 
while the value of Q  weight the state more than the 
inputs. Then, the feedback gain K  can be computed 
and the closed-loop system responses can be found by 
simulation. This method has an advantage of allowing 
all control loops in a multi-loop system to be closed 
simultaneously, while guaranteeing closed-loop 
stability. The LQR controller is given by  

( ) ( ),u k Kx k= −     (24) 

where K  is the constant feedback gain obtained 
from the solution of the discrete algebraic Ricatti 
equation: 

( ) 1
,

.

T T

T T T

K B SB R B SA

S A SA A SBK C QC

−
= +

= − +
  (25) 

In conventional method to design LQR controller, 
the controller requires all state variables and often an 
observer is needed. However, the free-model based 
realization (22) is observable since all the states are 
constructed from the input–output data via (5). 
Therefore, an observer is not required for state 
feedback control. Since the realization is linear, any 
linear controller design method can be used. 

 
5. COMPUTER SIMULATIONS 

 
The free model concept is applied to design a PSS 

for a one-machine infinite-bus (OMIB) power system 
[10]. For the OMIB power system, the q-axis 
generator model, the static excitation, and turbine and 
governor models are used. Three simulation tasks are 
conducted: first, torque angle deviation is simulated in 
a normal load condition. Second, torque deviation is 
performed in a heavy load condition. Third, a three-
phase fault is considered. All simulations are shown 
by the comparisons between the CPSS and proposed 
SPSA-based LQR controller. The proposed controller 
shows the improvement of damping performance for a 
simple second order free model approximation 
( 2).N =  The R  and Q  for LQR are 10-6 and 

6
11 12 21 11=10 , = =0, =1.Q Q Q Q  The initial conditions 

for simulations are torque angle d = 0.9767, the -d q  
axis stator current Id = 06232 and Iq = 0.8072, the 

-d q  axis stator voltage Vd = 0.4439 and Vq= 0.8960, 
the internal voltage Epq = 1.0144, the field voltage Efd 

=1.5023, and the reference voltage  = 1.06.refV  
 

• SPSA-based free model approximation 
The system is disturbed by small noise signals. 

Then, the system input-output pairs are obtained. The 
system input is the controller output in CPSS, and the 
system output is the angular speed (ω). Fig. 1 shows 
the comparison between the system output and the 
SPSA-based second-order free-model output. The 
SPSA-based free-model output is almost converged to 
system output and the root-mean square error is very 
small as 0.0004106. The coefficients found are a1 =   
-0.9977, a2 = 0.6570, b0 = -0.5331, and b1=0.5826. 

 
• Normal load condition 

In this case, the torque angle is decreased by 0.7767 
with =1loadP  and =0.2.loadQ  Fig. 2 shows the 
system performance between the CPSS and proposed 
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Fig. 1. Comparison between the system output and 
the SPSA-based free-model output. 
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Fig. 2. Comparison of the system output between the 
CPSS and the proposed controller. 
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controller. Faster damping is recognized in the 
proposed controller case.  

 
• Heavy load condition 

In this task, the conditions of the torque angle and 
loadQ  are the same as the case B. However, to 

evaluate the heavy load condition, loadP  is increased 
by 1.2. Fig. 3 shows the system performance between 
the CPSS and the proposed controller. Better 
performance in the proposed controller is also shown. 

 
• Three-phased fault condition 

In this task, the conditions are as follows: a fault is 
occurred at 1 second, and the faulted line is 
disconnected at 1.04 second. Then, the faulted line is 
reconnected at 1.1 second. The line impedance is 
changed to conduct the fault conditions. For example, 

=0.12R  and = 0.2X  during the fault, and =0.6R  
and =1 X  for the removal of the faulted line. Fig. 4 
shows that the faster damping can be recognized in 
the proposed controller.  

 
Therefore, Figs. 2, 3, and 4 show that the proposed 

SPSA based LQR controller is robust for a wide range 

of operation conditions. Observing the figures, the 
angle speed is slightly higher, but almost negligibly, 
than the case with CPSS for the normal and heavy 
load conditions. However, in a more realistic fault 
shown in Fig. 4, the difference in angle speed is non 
existent. The LQR controller minimizes the average of 
the oscillation according to the performance index 
(23). This does not discriminate any signal, DC or 
frequencies under oscillatory modes, which is 
commonly done in the conventional PSS. 

 
6. CONCLUSION 

 
This paper presented the SPSA-based free-model 

approximation for system identification using input 
and output data and its application to the design of a 
PSS. The free-model concept is introduced as an 
alternative intelligent system technique to design a 
controller for an unknown dynamic system with input 
and output data only, and it does not require the 
knowledge of mathematical model for the system. The 
idea of free model comes from the Taylor series 
approximation, where an output can be estimated 
when such data as position, velocity, and acceleration 
are known. The SPSA method is used to find the 
parameters of the free model. The free model is then 
transformed to a linear state space model and the LQR 
technique is used to design a PSS. Observer is 
commonly required to design LQR; however, the free 
model does not require the observer. The SPSA based 
LQR controller was implemented in a one-machine 
infinite-bus power system. The proposed controller 
was tested in various operating condition and 
compared with the conventional PSS. In all cases, the 
proposed controller out-performed the conventional 
PSS and thus demonstrated the usefulness of the 
SPSA-based LQR controller. 

 
APPENDIX A 

One-machine infinite-bus (OMIB) power system is 
shown in the one-line diagram in Fig. A1, and a 
conventional power system stabilizer is presented in 
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Fig. 3. Comparison of the system output between the 
CPSS and the proposed controller. 
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Fig. A2. The model is used for generator-turbine 
system [21]. 

Generator-Turbine: 
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Network equation: 
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AVR and exciter: 

( ( ) ).fdi
Ai Ai refi i pssi fdi

dE
T K V V U E

dt
= − + −  

Governor (GOV): 

( ( ) ).i
i i i

g
g g refi i g

dU
T K U

dt
ω ω= − −  

Generator parameters in p.u.: 

00.973, 0.19, 0.55, 7.76,

9.26, 0.01, 1, 0.1.
d d q d

hp c

x x x T

M D F T

′ ′= = = =

= = = =
 

AVR and GOV parameters: 

25, 0.05, 10, 0.1.A A g gK T K T= = = =  

Transmission line parameters in p.u.: 

0.03, 0.5.E ER X= =  

Constants of a conventional PSS for comparison: 

1 20.685, 0.1, 3, 7.091.w ccT T T K= = = =  
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