1,381 research outputs found

    Lung Epithelial TRPA1 Mediates Lipopolysaccharide-Induced Lung Inflammation in Bronchial Epithelial Cells and Mice

    Get PDF
    Toll-like receptor (TLR) 4 was originally thought to be the sole pattern recognition receptor for lipopolysaccharide (LPS). Transient receptor potential ankyrin 1 (TRPA1), a Ca2+-permeant channel, has been suggested as a non-TLR receptor membrane-bound sensor of LPS. We recently reported that TRPA1 is expressed in lung epithelial cells (LECs) and mediates lung inflammation induced by cigarette smoke. However, the role of TRPA1 in LPS-induced lung inflammation has not been conclusively defined, and its underlying cellular mechanisms remain unclear. In this study, our in vitro results showed that LPS sequentially produced a cascade of events, including the elevation of intracellular Ca2+, the activation of NADPH oxidase, increase in intracellular reactive oxygen species (ROS), the activation of mitogen-activated protein kinase (MAPK)/nuclear factor-kB (NF-κB) signaling, and the induction of IL-8. The increase in intracellular Ca2+ was inhibited by HC030031 (a TRPA1 antagonist) but was unaffected by TAK-242 (a TLR-4 inhibitor). The activation of NADPH oxidase was prevented by its inhibitor apocynin, EGTA (an extracellular Ca2+ chelator), and HC030031. The increase in intracellular ROS was attenuated by apocynin, N-acetyl-cysteine (NAC, a ROS scavenger), EGTA, and HC030031. The activation of the MAPK/NF-κB signaling was halted by NAC, EGTA, and HC030031. IL-8 induction was suppressed by HC030031 and TRPA1 siRNA, and further reduced by the combination of HC030031 and TAK-242. Our in vivo studies showed that trpa1–/– mice exhibited a reduced level of LPS-induced lung inflammation compared with wild-type mice as evidenced by the alleviations of increases in vascular permeability, inflammatory cell infiltration, inflammatory cytokine levels, oxidative stress, and MAPK signaling activation. Thus, in LECs, LPS may activate TRPA1 resulting in an increase in Ca2+ influx. The increased intracellular Ca2+ leads to NADPH oxidase activation, which causes an increase in intracellular ROS. The intracellular ROS activates the MAPK/NF-κB signaling resulting in IL-8 induction. This mechanism may possibly be at work to induce lung inflammation in mice

    Hesperetin, a Selective Phosphodiesterase 4 Inhibitor, Effectively Suppresses Ovalbumin-Induced Airway Hyperresponsiveness without Influencing Xylazine/Ketamine-Induced Anesthesia

    Get PDF
    Hesperetin, a selective phosphodiesterase (PDE)4 inhibitor, is present in the traditional Chinese medicine, “Chen Pi.” Therefore, we were interested in investigating its effects on ovalbumin- (OVA-) induced airway hyperresponsiveness, and clarifying its rationale for ameliorating asthma and chronic obstructive pulmonary disease (COPD). Hesperetin was revealed to have a therapeutic (PDE4H/PDE4L) ratio of >11. Hesperetin (10 ~ 30 μmol/kg, intraperitoneally (i.p.)) dose-dependently and significantly attenuated the airway hyperresponsiveness induced by methacholine. It also significantly suppressed the increases in total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, and levels of cytokines, including interleukin (IL)-2, IL-4, IL-5, interferon-γ, and tumor necrosis factor-α in bronchoalveolar lavage fluid (BALF). It dose-dependently and significantly suppressed total and OVA-specific immunoglobulin E levels in the BALF and serum. However, hesperetin did not influence xylazine/ketamine-induced anesthesia, suggesting that hesperetin has few or no emetic effects. In conclusion, the rationales for ameliorating allergic asthma and COPD by hesperetin are anti-inflammation, immunoregulation, and bronchodilation

    Hesperetin-7,3'-O-dimethylether selectively inhibits phosphodiesterase 4 and effectively suppresses ovalbumin-induced airway hyperresponsiveness with a high therapeutic ratio

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hesperetin was reported to selectively inhibit phosphodiesterase 4 (PDE4). While hesperetin-7,3'-<it>O</it>-dimethylether (HDME) is a synthetic liposoluble hesperetin. Therefore, we were interested in investigating its selectivity on PDE4 and binding ability on high-affinity rolipram-binding sites (HARBs) <it>in vitro</it>, and its effects on ovalbumin-induced airway hyperresponsiveness <it>in vivo</it>, and clarifying its potential for treating asthma and chronic obstructive pulmonary disease (COPD).</p> <p>Methods</p> <p>PDE1~5 activities were measured using a two-step procedure. The binding of HDME on high-affinity rolipram-binding sites was determined by replacing 2 nM [<sup>3</sup><it>H</it>]-rolipram. AHR was assessed using the FlexiVent system and barometric plethysmography. Inflammatory cells were counted using a hemocytometer. Cytokines were determined using mouse T helper (Th)1/Th2 cytokine CBA kits, and total immunoglobulin (Ig)E or IgG<sub>2a </sub>levels were done using ELISA method. Xylazine (10 mg/kg)/ketamine (70 mg/kg)-induced anesthesia was performed.</p> <p>Results</p> <p>HDME revealed selective phosphodiesterase 4 (PDE4) inhibition with a therapeutic (PDE4<sub>H</sub>/PDE4<sub>L</sub>) ratio of 35.5 <it>in vitro</it>. <it>In vivo</it>, HDME (3~30 μmol/kg, orally (p.o.)) dose-dependently and significantly attenuated the airway resistance (R<sub>L</sub>) and increased lung dynamic compliance (C<sub>dyn</sub>), and decreased enhanced pause (P<sub>enh</sub>) values induced by methacholine in sensitized and challenged mice. It also significantly suppressed the increases in the numbers of total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, and levels of cytokines, including interleukin (IL)-2, IL-4, IL-5, interferon-γ, and tumor necrosis factor-α in bronchoalveolar lavage fluid (BALF) of these mice. In addition, HDME (3~30 μmol/kg, p.o.) dose-dependently and significantly suppressed total and ovalbumin-specific immunoglobulin (Ig)E levels in the BALF and serum, and enhanced IgG<sub>2a </sub>level in the serum of these mice.</p> <p>Conclusions</p> <p>HDME exerted anti-inflammatory effects, including suppression of AHR, and reduced expressions of inflammatory cells and cytokines in this murine model, which appears to be suitable for studying the effects of drugs on atypical asthma and COPD, and for screening those on typical asthma. However, HDME did not influnce xylazine/ketamine-induced anesthesia. Thus HDME may have the potential for use in treating typical and atypical asthma, and COPD.</p

    Hesperidin-3′- O

    Get PDF
    Hesperidin is present in the traditional Chinese medicine, “Chen Pi,” and recently was reported to have anti-inflammatory effects. Therefore, we were interested in comparing the effects of hesperidin and hesperidin-3′-O-methylether on phosphodiesterase inhibition and airway hyperresponsiveness (AHR) in a murine model of asthma. In the present results, hesperidin-3′-O-methylether, but not hesperidin, at 30 μmol/kg (p.o.) significantly attenuated the enhanced pause (Penh) value, suppressed the increases in numbers of total inflammatory cells, macrophages, lymphocytes, neutrophils, and eosinophils, suppressed total and OVA-specific immunoglobulin (Ig)E levels in the serum and BALF, and enhanced the level of total IgG2a in the serum of sensitized and challenged mice, suggesting that hesperidin-3′-O-methylether is more potent than hesperidin in suppression of AHR and immunoregulation. The different potency between them may be due to their aglycons, because these two flavanone glycosides should be hydrolyzed by β-glucosidase after oral administration. Neither influenced xylazine/ketamine-induced anesthesia, suggesting that they may have few or no adverse effects, such as nausea, vomiting, and gastric hypersecretion. In conclusion, hesperidin-3′-O-methylether is more potent in phosphodiesterase inhibition and suppression of AHR and has higher therapeutic (PDE4H/PDE4L) ratio than hesperidin. Thus, hesperidin-3′-O-methylether may have more potential for use in treating allergic asthma and chronic obstructive pulmonary disease

    Src-family kinase-Cbl axis negatively regulates NLRP3 inflammasome activation.

    Get PDF
    Activation of the NLRP3 inflammasome is crucial for immune defense, but improper and excessive activation causes inflammatory diseases. We previously reported that Pyk2 is essential for NLRP3 inflammasome activation. Here we show that the Src-family kinases (SFKs)-Cbl axis plays a pivotal role in suppressing NLRP3 inflammasome activation in response to stimulation by nigericin or ATP, as assessed using gene knockout and gene knockdown cells, dominant active/negative mutants, and pharmacological inhibition. We reveal that the phosphorylation of Cbl is regulated by SFKs, and that phosphorylation of Cbl at Tyr371 suppresses NLRP3 inflammasome activation. Mechanistically, Cbl decreases the level of phosphorylated Pyk2 (p-Pyk2) through ubiquitination-mediated proteasomal degradation and reduces mitochondrial ROS (mtROS) production by contributing to the maintenance of mitochondrial size. The lower levels of p-Pyk2 and mtROS dampen NLRP3 inflammasome activation. In vivo, inhibition of Cbl with an analgesic drug, hydrocotarnine, increases inflammasome-mediated IL-18 secretion in the colon, and protects mice from dextran sulphate sodium-induced colitis. Together, our novel findings provide new insights into the role of the SFK-Cbl axis in suppressing NLRP3 inflammasome activation and identify a novel clinical utility of hydrocortanine for disease treatment
    corecore