25,622 research outputs found
Multi-wavelength Emission from the Fermi Bubble III. Stochastic (Fermi) Re-Acceleration of Relativistic Electrons Emitted by SNRs
We analyse the model of stochastic re-acceleration of electrons, which are
emitted by supernova remnants (SNRs) in the Galactic Disk and propagate then
into the Galactic halo, in order to explain the origin on nonthermal (radio and
gamma-ray) emission from the Fermi Bubbles (FB). We assume that the energy for
re-acceleration in the halo is supplied by shocks generated by processes of
star accretion onto the central black hole. Numerical simulations show that
regions with strong turbulence (places for electron re-acceleration) are
located high up in the Galactic Halo about several kpc above the disk. The
energy of SNR electrons that reach these regions does not exceed several GeV
because of synchrotron and inverse Compton energy losses. At appropriate
parameters of re-acceleration these electrons can be re-accelerated up to the
energy 10E12 eV which explains in this model the origin of the observed radio
and gamma-ray emission from the FB. However although the model gamma-ray
spectrum is consistent with the Fermi results, the model radio spectrum is
steeper than the observed by WMAP and Planck. If adiabatic losses due to plasma
outflow from the Galactic central regions are taken into account, then the
re-acceleration model nicely reproduces the Planck datapoints.Comment: 33 pages, 8 figures, accepted by Ap
Signatures for doubly-charged Higgsinos at colliders
Several supersymmetric models with extended gauge structures predict light
doubly-charged Higgsinos. Their distinctive signature at the large hadron
collider is highlighted by studying their production and decay characteristics.Comment: 3 pages, 4 figures, Latex. Submitted for SUSY 2008 proceeding
Hadron widths in mixed-phase matter
We derive classically an expression for a hadron width in a two-phase region
of hadron gas and quark-gluon plasma (QGP). The presence of QGP gives hadrons
larger widths than they would have in a pure hadron gas. We find that the
width observed in a central Au+Au collision at
GeV/nucleon is a few MeV greater than the width in a pure hadron gas. The part
of observed hadron widths due to QGP is approximately proportional to
.Comment: 8 pages, latex, no figures, KSUCNR-002-9
Particle acceleration and the origin of gamma-ray emission from Fermi Bubbles
Fermi LAT has discovered two extended gamma-ray bubbles above and below the
galactic plane. We propose that their origin is due to the energy release in
the Galactic center (GC) as a result of quasi-periodic star accretion onto the
central black hole. Shocks generated by these processes propagate into the
Galactic halo and accelerate particles there. We show that electrons
accelerated up to ~10 TeV may be responsible for the observed gamma-ray
emission of the bubbles as a result of inverse Compton (IC) scattering on the
relic photons. We also suggest that the Bubble could generate the flux of CR
protons at energies > 10^15 eV because the shocks in the Bubble have much
larger length scales and longer lifetimes in comparison with those in SNRs.
This may explain the the CR spectrum above the knee.Comment: 5 pages, 4 figures. Expanded version of the contribution to the 32nd
ICRC, Beijing, #0589. To appear in the proceeding
- …