2,085 research outputs found

    Prefix Codes: Equiprobable Words, Unequal Letter Costs

    Get PDF
    Describes a near-linear-time algorithm for a variant of Huffman coding, in which the letters may have non-uniform lengths (as in Morse code), but with the restriction that each word to be encoded has equal probability. [See also ``Huffman Coding with Unequal Letter Costs'' (2002).]Comment: proceedings version in ICALP (1994

    Information-Based Physics: An Observer-Centric Foundation

    Full text link
    It is generally believed that physical laws, reflecting an inherent order in the universe, are ordained by nature. However, in modern physics the observer plays a central role raising questions about how an observer-centric physics can result in laws apparently worthy of a universal nature-centric physics. Over the last decade, we have found that the consistent apt quantification of algebraic and order-theoretic structures results in calculi that possess constraint equations taking the form of what are often considered to be physical laws. I review recent derivations of the formal relations among relevant variables central to special relativity, probability theory and quantum mechanics in this context by considering a problem where two observers form consistent descriptions of and make optimal inferences about a free particle that simply influences them. I show that this approach to describing such a particle based only on available information leads to the mathematics of relativistic quantum mechanics as well as a description of a free particle that reproduces many of the basic properties of a fermion. The result is an approach to foundational physics where laws derive from both consistent descriptions and optimal information-based inferences made by embedded observers.Comment: To be published in Contemporary Physics. The manuscript consists of 43 pages and 9 Figure

    Complementary algorithms for graphs and percolation

    Full text link
    A pair of complementary algorithms are presented. One of the pair is a fast method for connecting graphs with an edge. The other is a fast method for removing edges from a graph. Both algorithms employ the same tree based graph representation and so, in concert, can arbitrarily modify any graph. Since the clusters of a percolation model may be described as simple connected graphs, an efficient Monte Carlo scheme can be constructed that uses the algorithms to sweep the occupation probability back and forth between two turning points. This approach concentrates computational sampling time within a region of interest. A high precision value of pc = 0.59274603(9) was thus obtained, by Mersenne twister, for the two dimensional square site percolation threshold.Comment: 5 pages, 3 figures, poster version presented at statphys23 (2007

    A Formal Definition of SOL

    Get PDF
    This paper gives a formal definition of SOL, a general-purpose algorithmic language useful for describing and simulating complex systems. SOL is described using meta-linguistic formulas as used in the definition of ALGOL 60. The principal differences between SOL and problem-oriented languages such as ALGOL or FORTRAN is that SOL includes capabilities for expressing parallel computation, convenient notations for embedding random quantities within arithmetic expressions and automatic means for gathering statistics about the elements involved. SOL differs from other simulation languages such as SIMSCRIPT primarily in simplicity of use and in readability since it is capable of describing models without including computer-oriented characteristics

    SOL - A Symbolic Language for General-Purpose Systems Simulation

    Get PDF
    This paper illustrates the use of SOL, a general-purpose algorithmic language useful for describing and simulating complex systems. Such a system is described as a number of individual processes which simultaneously enact a program very much like a computer program. (Some features of the SOL language are directly applicable to programming languages for parallel computers, as well as for simulation.) Once a system has been described in the language, the program can be translated by the SOL compiler into an interpretive code, and the execution of this code produces statistical information about the model. A detailed example of a SOL model for a multiple on-line console system is exhibited, indicating the notational simplicity and intuitive nature of the language

    Composite-fermionization of bosons in rapidly rotating atomic traps

    Full text link
    The non-perturbative effect of interaction can sometimes make interacting bosons behave as though they were free fermions. The system of neutral bosons in a rapidly rotating atomic trap is equivalent to charged bosons coupled to a magnetic field, which has opened up the possibility of fractional quantum Hall effect for bosons interacting with a short range interaction. Motivated by the composite fermion theory of the fractional Hall effect of electrons, we test the idea that the interacting bosons map into non-interacting spinless fermions carrying one vortex each, by comparing wave functions incorporating this physics with exact wave functions available for systems containing up to 12 bosons. We study here the analogy between interacting bosons at filling factors Îœ=n/(n+1)\nu=n/(n+1) with non-interacting fermions at Μ∗=n\nu^*=n for the ground state as well as the low-energy excited states and find that it provides a good account of the behavior for small nn, but interactions between fermions become increasingly important with nn. At Îœ=1\nu=1, which is obtained in the limit n→∞n\rightarrow \infty, the fermionization appears to overcompensate for the repulsive interaction between bosons, producing an {\em attractive} interactions between fermions, as evidenced by a pairing of fermions here.Comment: 8 pages, 3 figures. Submitted to Phys. Rev.

    Origin of Complex Quantum Amplitudes and Feynman's Rules

    Full text link
    Complex numbers are an intrinsic part of the mathematical formalism of quantum theory, and are perhaps its most mysterious feature. In this paper, we show that the complex nature of the quantum formalism can be derived directly from the assumption that a pair of real numbers is associated with each sequence of measurement outcomes, with the probability of this sequence being a real-valued function of this number pair. By making use of elementary symmetry conditions, and without assuming that these real number pairs have any other algebraic structure, we show that these pairs must be manipulated according to the rules of complex arithmetic. We demonstrate that these complex numbers combine according to Feynman's sum and product rules, with the modulus-squared yielding the probability of a sequence of outcomes.Comment: v2: Clarifications, and minor corrections and modifications. Results unchanged. v3: Minor changes to introduction and conclusio

    An O(M(n) log n) algorithm for the Jacobi symbol

    Get PDF
    The best known algorithm to compute the Jacobi symbol of two n-bit integers runs in time O(M(n) log n), using Sch\"onhage's fast continued fraction algorithm combined with an identity due to Gauss. We give a different O(M(n) log n) algorithm based on the binary recursive gcd algorithm of Stehl\'e and Zimmermann. Our implementation - which to our knowledge is the first to run in time O(M(n) log n) - is faster than GMP's quadratic implementation for inputs larger than about 10000 decimal digits.Comment: Submitted to ANTS IX (Nancy, July 2010

    Computing Aggregate Properties of Preimages for 2D Cellular Automata

    Full text link
    Computing properties of the set of precursors of a given configuration is a common problem underlying many important questions about cellular automata. Unfortunately, such computations quickly become intractable in dimension greater than one. This paper presents an algorithm --- incremental aggregation --- that can compute aggregate properties of the set of precursors exponentially faster than na{\"i}ve approaches. The incremental aggregation algorithm is demonstrated on two problems from the two-dimensional binary Game of Life cellular automaton: precursor count distributions and higher-order mean field theory coefficients. In both cases, incremental aggregation allows us to obtain new results that were previously beyond reach
    • 

    corecore