263 research outputs found

    Systemically Administered Ligands of Toll-Like Receptor 2, -4, and -9 Induce Distinct Inflammatory Responses in the Murine Lung

    Get PDF
    Objective. To determine whether systemically administered TLR ligands differentially modulate pulmonary inflammation. Methods. Equipotent doses of LPS (20 mg/kg), CpG-ODN (1668-thioat 1 nmol/g), or LTA (15 mg/kg) were determined via TNF activity assay. C57BL/6 mice were challenged intraperitoneally. Pulmonary NFκB activation (2 h) and gene expression/activity of key inflammatory mediators (4 h) were monitored. Results. All TLR ligands induced NFκB. LPS increased the expression of TLR2, 6, and the cytokines IL-1αβ, TNF-α, IL-6, and IL-12p35/p40, CpG-ODN raised TLR6, TNF-α, and IL12p40. LTA had no effect. Additionally, LPS increased the chemokines MIP-1α/β, MIP-2, TCA-3, eotaxin, and IP-10, while CpG-ODN and LTA did not. Myeloperoxidase activity was highest after LPS stimulation. MMP1, 3, 8, and 9 were upregulated by LPS, MMP2, 8 by CpG-ODN and MMP2 and 9 by LTA. TIMPs were induced only by LPS. MMP-2/-9 induction correlated with their zymographic activities. Conclusion. Pulmonary susceptibility to systemic inflammation was highest after LPS, intermediate after CpG-ODN, and lowest after LTA challenge

    Toll-like receptor 4 deficiency: Smaller infarcts, but nogain in function

    Get PDF
    <p>Abstract</p> <p>Backgound</p> <p>It has been reported that Toll-like receptor 4 (TLR4) deficiency reduces infarct size after myocardial ischemia/reperfusion (MI/R). However, measurement of MI/R injury was limited and did not include cardiac <b>function</b>. In a chronic closed-chest model we assessed whether cardiac <b>function </b>is preserved in TLR4-deficient mice (C3H/HeJ) following MI/R, and whether myocardial and systemic cytokine expression differed compared to wild type (WT).</p> <p>Results</p> <p>Infarct size (IS) in C3H/HeJ assessed by TTC staining after 60 min ischemia and 24h reperfusion was significantly smaller than in WT. Despite a smaller infarct size, echocardiography showed no functional difference between C3H/HeJ and WT. Left-ventricular developed pressure measured with a left-ventricular catheter was lower in C3H/HeJ (63.0 ± 4.2 mmHg vs. 77.9 ± 1.7 mmHg in WT, p < 0.05). Serum cytokine levels and myocardial IL-6 were higher in WT than in C3H/HeJ (p < 0.05). C3H/HeJ MI/R showed increased myocardial IL-1β and IL-6 expression compared to their respective shams (p < 0.05), indicating TLR4-independent cytokine activation due to MI/R.</p> <p>Conclusion</p> <p>These results demonstrate that, although a mutant TLR4 signaling cascade reduces myocardial IS and serum cytokine levels, it <b>does not preserve myocardial function</b>. The change in inflammatory response, secondary to a non-functional TLR-4 receptor, may contribute to the observed dichotomy between infarct size and function in the TLR-4 mutant mouse.</p

    CpG oligonucleotide activates Toll-like receptor 9 and causes lung inflammation in vivo

    Get PDF
    Background Bacterial DNA containing motifs of unmethylated CpG dinucleotides (CpG-ODN) initiate an innate immune response mediated by the pattern recognition receptor Toll-like receptor 9 (TLR9). This leads in particular to the expression of proinflammatory mediators such as tumor necrosis factor (TNF-alpha) and interleukin-1beta (IL-1beta). TLR9 is expressed in human and murine pulmonary tissue and induction of proinflammatory mediators has been linked to the development of acute lung injury. Therefore, the hypothesis was tested whether CpG-ODN administration induces an inflammatory response in the lung via TLR9 in vivo. Methods Wild-type (WT) and TLR9-deficient (TLR9-D) mice received CpG-ODN intraperitoneally (1668-Thioat, 1 nmol/g BW) and were observed for up to 6 hrs. Lung tissue and plasma samples were taken and various inflammatory markers were measured. Results In WT mice, CpG-ODN induced a strong activation of pulmonary NFKB as well as a significant increase in pulmonary TNF-alpha and IL-1beta mRNA/protein. In addition, cytokine serum levels were significantly elevated in WT mice. Increased pulmonary content of lung myeloperoxidase (MPO) was documented in WT mice following application of CpG-ODN. Bronchoalveolar lavage (BAL) revealed that CpG-ODN stimulation significantly increased total cell number as well as neutrophil count in WT animals. In contrast, the CpG-ODN-induced inflammatory response was abolished in TLR9-D mice. Conclusion This study suggests that bacterial CpG-ODN causes lung inflammation via TLR9

    A Marine Anthraquinone SZ-685C Overrides Adriamycin-Resistance in Breast Cancer Cells through Suppressing Akt Signaling

    Get PDF
    Breast cancer remains a major health problem worldwide. While chemotherapy represents an important therapeutic modality against breast cancer, limitations in the clinical use of chemotherapy remain formidable because of chemoresistance. The HER2/PI-3K/Akt pathway has been demonstrated to play a causal role in conferring a broad chemoresistance in breast cancer cells and thus justified to be a target for enhancing the effects of anti-breast cancer chemotherapies, such as adriamycin (ADR). Agents that can either enhance the effects of chemotherapeutics or overcome chemoresistance are urgently needed for the treatment of breast cancer. In this context, SZ-685C, an agent that has been previously shown, as such, to suppress Akt signaling, is expected to increase the efficacy of chemotherapy. Our current study investigated whether SZ-685C can override chemoresistance through inhibiting Akt signaling in human breast cancer cells. ADR-resistant cells derived from human breast cancer cell lines MCF-7, MCF-7/ADR and MCF-7/Akt, were used as models to test the effects of SZ-685C. We found that SZ-685C suppressed the Akt pathway and induced apoptosis in MCF-7/ADR and MCF-7/Akt cells that are resistant to ADR treatment, leading to antitumor effects both in vitro and in vivo. Our data suggest that use of SZ-685C might represent a potentially promising approach to the treatment of ADR-resistant breast cancer

    Intratracheal synthetic CpG oligodeoxynucleotide causes acute lung injury with systemic inflammatory response

    Get PDF
    Bacterial genome is characterized by frequent unmethylated cytosine-phosphate-guanine (CpG) motifs. Deleterious effects can occur when synthetic oligodeoxynucleotides (ODN) with unmethylated CpG dinucleotides (CpG-ODN) are administered in a systemic fashion. We aimed to evaluate the effect of intratracheal CpG-ODN on lung inflammation and systemic inflammatory response. C57BL/6J mice received intratracheal administration of CpG-ODN (0.01, 0.1, 1.0, 10, or 100 μM) or control ODN without CpG motif. Bronchoalveolar lavage (BAL) fluid was obtained 3 or 6 h or 1, 2, 7, or 14 days after the instillation and subjected to a differential cell count and cytokine measurement. Lung permeability was evaluated as the BAL fluid-to-plasma ratio of the concentration of human serum albumin that was injected 1 h before euthanasia. Nuclear factor (NF)-κB DNA binding activity was also evaluated in lung homogenates. Intratracheal administration of 10 μM or higher concentration of CpG-ODN induced significant inflammatory cell accumulation into the airspace. The peak accumulation of neutrophils and lymphocytes occurred 1 and 2 days after the CpG-ODN administration, respectively. Lung permeability was increased 1 day after the 10 μM CpG-ODN challenge. CpG-ODN also induced nuclear translocation of NF-κB and upregulation of various inflammatory cytokines in BAL fluid and plasma. Histopathology of the lungs and liver revealed acute lung injury and liver damage with necrosis, respectively. Control ODN without CpG motif did not induce any inflammatory change. Since intratracheal CpG-ODN induced acute lung injury as well as systemic inflammatory response, therapeutic strategies to neutralize bacterial DNA that is released after administration of bactericidal agents should be considered

    The effects of tea extracts on proinflammatory signaling

    Get PDF
    BACKGROUND: Skin toxicity is a common side effect of radiotherapy for solid tumors. Its management can cause treatment gaps and thus can impair cancer treatment. At present, in many countries no standard recommendation for treatment of skin during radiotherapy exists. In this study, we explored the effect of topically-applied tea extracts on the duration of radiation-induced skin toxicity. We investigated the underlying molecular mechanisms and compared effects of tea extracts with the effects of epigallocatechin-gallate, the proposed most-active moiety of green tea. METHODS: Data from 60 patients with cancer of the head and neck or pelvic region topically treated with green or black tea extracts were analyzed retrospectively. Tea extracts were compared for their ability to modulate IL-1β, IL-6, IL-8, TNFα and PGE(2 )release from human monocytes. Effects of tea extracts on 26S proteasome function were assessed. NF-κB activity was monitored by EMSAs. Viability and radiation response of macrophages after exposure to tea extracts was measured by MTT assays. RESULTS: Tea extracts supported the restitution of skin integrity. Tea extracts inhibited proteasome function and suppressed cytokine release. NF-κB activity was altered by tea extracts in a complex, caspase-dependent manner, which differed from the effects of epigallocatechin-gallate. Additionally, both tea extracts, as well as epigallocatechin-gallate, slightly protected macrophages from ionizing radiation CONCLUSION: Tea extracts are an efficient, broadly available treatment option for patients suffering from acute radiation-induced skin toxicity. The molecular mechanisms underlying the beneficial effects are complex, and most likely not exclusively dependent on effects of tea polyphenols such as epigallocatechin-gallate

    New targets for therapy in breast cancer: Mammalian target of rapamycin (mTOR) antagonists

    Get PDF
    Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biologic functions such as transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In breast cancer this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. There is evidence suggesting that Akt promotes breast cancer cell survival and resistance to chemotherapy, trastuzumab, and tamoxifen. Rapamycin is a specific mTOR antagonist that targets this pathway and blocks the downstream signaling elements, resulting in cell cycle arrest in the G(1 )phase. Targeting the Akt/PI3K pathway with mTOR antagonists may increase the therapeutic efficacy of breast cancer therapy

    The synthetic antimicrobial peptide 19-2.5 attenuates septic cardiomyopathy and prevents down-regulation of SERCA2 in polymicrobial sepsis

    Get PDF
    LM has received grants by the Faculty of Medicine at the RWTH Aachen University (START 15/14 and START 46/16) and the Deutsche Forschungsgemeinschaft (DFG, MA 7082/1–1). This work was supported by the Immunohistochemistry and Confocal Microscopy Unit, a core facility of the Interdisciplinary Centre for Clinical Research (IZKF) Aachen, within the Faculty of Medicine at the RWTH Aachen University and the RWTH centralized Biomaterial Database (RWTH cBMB) of the University Hospital RWTH Aachen. We are very grateful to Antons Martincuks M.Sc. and Professor Gerhard Müller-Newen for live-cell imaging. This work was supported, in part, by the University of Turin (ex-60% 2015A and B) and by the William Harvey Research Foundation and forms part of the research themes contributing to the translational research portfolio of Barts and the London Cardiovascular Biomedical Research Unit that is supported and funded by the National Institute for Health Research. This work also contributes to the Organ Protection research theme of the Barts Centre for Trauma Sciences supported by the Barts and The London Charity (Award 753/1722)
    corecore