1,798 research outputs found

    Warming Up Density Functional Theory

    Full text link
    Density functional theory (DFT) has become the most popular approach to electronic structure across disciplines, especially in material and chemical sciences. Last year, at least 30,000 papers used DFT to make useful predictions or give insight into an enormous diversity of scientific problems, ranging from battery development to solar cell efficiency and far beyond. The success of this field has been driven by usefully accurate approximations based on known exact conditions and careful testing and validation. In the last decade, applications of DFT in a new area, warm dense matter, have exploded. DFT is revolutionizing simulations of warm dense matter including applications in controlled fusion, planetary interiors, and other areas of high energy density physics. Over the past decade or so, molecular dynamics calculations driven by modern density functional theory have played a crucial role in bringing chemical realism to these applications, often (but not always) with excellent agreement with experiment. This chapter summarizes recent work from our group on density functional theory at non-zero temperatures, which we call thermal DFT. We explain the relevance of this work in the context of warm dense matter, and the importance of quantum chemistry to this regime. We illustrate many basic concepts on a simple model system, the asymmetric Hubbard dimer

    Arkansas Tech University Modular Robotics Training System

    Get PDF
    Arkansas Tech University Modular Robotic Training System (ATUM RTS) project aims to combine two existing systems: The Georgia Tech Robotarium and the Micromouse maze-solving competition. The goal of ATUM RTS is to incorporate the challenge and excitement of maze-solving robots with the cloud-based learning system of the Robotarium. We intend to develop an automatic maze table with future remote capabilities to further student learning and engagement. By being able to create custom mazes with ATUM RTS, students will have access to a resource that will allow them to practically apply what they are learning in the classroom. The ATUM RTS maze table will consist of modular tiles with remote controlled walls in between them that can be raised and lowered in order to create the custom maze. The main goal for this phase of the project was to design the wall structure and the wall actuation system through the utilization of nitinol shape memory alloy. The actuation system was determined by looking at previous studies with nitinol and by experimenting with different methods. The best method was found to utilize two-way nitinol, mechanical relays, and a bi-stable magnetic flexure. The remaining objectives to be completed by future groups for this project include designing and programming remote and wireless communication capabilities, and implementing the complete 12x12 tile table

    Parity Violation in Neutron Resonances in 107,109Ag

    Get PDF
    Parity nonconservation (PNC) was studied in p-wave resonances in Ag by measuring the helicity dependence of the neutron total cross section. Transmission measurements on natural Ag were performed in the energy range 32 to 422 eV with the time-of-flight method at the Manuel Lujan Neutron Scattering Center at Los Alamos National Laboratory. A total of 15 p-wave neutron resonances were studied in 107Ag and ninep-wave resonances in 109Ag. Statistically significant asymmetries were observed for eight resonances in 107Ag and for four resonances in109Ag. An analysis treating the PNC matrix elements as random variables yields a weak spreading width of Γw=(2.67-1.21+2.65)×10-7 eV for107Ag and Γw=(1.30-0.74+2.49)×10-7 eV for 109Ag

    Evaluations of University of Wisconsin Silicon Carbide Temperature Monitors 300 LO and 400 LO B

    Get PDF
    Silicon carbide (SiC) temperature monitors 05R4-02-A KG1403 (300 LO) and 05R4-01-A KG1415 (400 LO B) were evaluated at the High Temperature Test Lab (HTTL) to determine their peak irradiation temperatures. HTTL measurements indicate that the peak irradiation temperature for the 300 LO monitor was 295 {+-} 20 C and the peak irradiation temperature for the 400 LO B monitor was 294 {+-} 25 C. Two silicon carbide (SiC) temperature monitors irradiated in the Advanced Test Reactor (ATR) were evaluated at the High Temperature Test Lab (HTTL) to determine their peak temperature during irradiation. These monitors were irradiated as part of the University of Wisconsin Pilot Project with a target dose of 3 dpa. Temperature monitors were fabricated from high density (3.203 g/cm3) SiC manufactured by Rohm Haas with a nominal size of 12.5 mm x 1.0 mm x 0.75 mm (see Attachment A). Table 1 provides identification for each monitor with an expected peak irradiation temperature range based on preliminary thermal analysis (see Attachment B). Post irradiation calculations are planned to reduce uncertainties in these calculated temperatures. Since the early 1960s, SiC has been used as a post-irradiation temperature monitor. As noted in Reference 2, several researchers have observed that neutron irradiation induced lattice expansion of SiC annealed out when the post-irradiation annealing temperature exceeds the peak irradiation temperature. As noted in Reference 3, INL uses resistivity measurements to infer peak irradiation temperature from SiC monitors. Figure 1 depicts the equipment at the HTTL used to evaluate the SiC monitors. The SiC monitors are heated in the annealing furnace using isochronal temperature steps that, depending on customer needs, can range from 50 to 800 C. This furnace is located under a ventilation hood within the stainless steel enclosure. The ventilation system is activated during heating so that any released vapors are vented through this system. Annealing temperatures are recorded using a National Institute of Standards and Technology (NIST) traceable thermocouple inserted into an alumina tube in the furnace. After each isochronal annealing, the specimens are placed in a specialized fixture located in the constant temperature chamber (maintained at 30 C) for a minimum of 30 minutes. After the 30 minute wait time, each specimen's resistance is measured using the specialized fixture and a calibrated DC power analyzer. This report discusses the evaluation of the SiC monitors and presents the results. Testing was conducted in accordance with Reference 3. Sections 2 and 3 present the data collected for each monitor and provide interpretation of the data. Section 4 presents the evaluated temperature results

    Parity Violation in Neutron Resonances in 115In

    Get PDF
    Parity nonconservation (PNC) was studied in p-wave resonances in indium by measuring the helicity dependence of the neutron total cross section in the neutron energy range 6.0–316 eV with the time-of-flight method at LANSCE. A total of 36 p-wave neutron resonances were studied in 115In, and statistically significant asymmetries were observed for nine cases. An analysis treating the PNC matrix elements as random variables yields a weak matrix element of M=(0.67-0.12+0.16) meV and a weak spreading width of Γw=(1.30-0.43+0.76)×10-7 eV

    The Equation of State and the Hugoniot of Laser Shock-Compressed Deuterium

    Full text link
    The equation of state and the shock Hugoniot of deuterium are calculated using a first-principles approach, for the conditions of the recent shock experiments. We use density functional theory within a classical mapping of the quantum fluids [ Phys. Rev. Letters, {\bf 84}, 959 (2000) ]. The calculated Hugoniot is close to the Path-Integral Monte Carlo (PIMC) result. We also consider the {\it quasi-equilibrium} two-temperature case where the Deuterons are hotter than the electrons; the resulting quasi-equilibrium Hugoniot mimics the laser-shock data. The increased compressibility arises from hot D+−eD^+-e pairs occuring close to the zero of the electron chemical potential.Comment: Four pages; One Revtex manuscript, two postscipt figures; submitted to PR
    • …
    corecore