2,819 research outputs found

    Cross-Correlating Cosmic Microwave Background Radiation Fluctuations with Redshift Surveys: Detecting the Signature of Gravitational Lensing

    Get PDF
    Density inhomogeneities along the line-of-sight distort fluctuations in the cosmic microwave background. Usually, this effect is thought of as a small second-order effect that mildly alters the statistics of the microwave background fluctuations. We show that there is a first-order effect that is potentially observable if we combine microwave background maps with large redshift surveys. We introduce a new quantity that measures this lensing effect, , where T is the microwave background temperature and δθ\delta \theta is the lensing due to matter in the region probed by the redshift survey. We show that the expected signal is first order in the gravitational lensing bending angle, <(δθ)2>1/2< (\delta \theta)^2 >^{1/2}, and find that it should be easily detectable, (S/N) \sim 15-35, if we combine the Microwave Anisotropy Probe satellite and Sloan Digital Sky Survey data. Measurements of this cross-correlation will directly probe the ``bias'' factor, the relationship between fluctuations in mass and fluctuations in galaxy counts.Comment: 13 pages, 4 postscript figures included; Uses aaspp4.sty (AASTeX v4.0); Accepted for publication in Astrophysical Journal, Part

    Analysis of the exciton-exciton interaction in semiconductor quantum wells

    Full text link
    The exciton-exciton interaction is investigated for quasi-two-dimensional quantum structures. A bosonization scheme is applied including the full spin structure. For generating the effective interaction potentials, the Hartree-Fock and Heitler-London approaches are improved by a full two-exciton calculation which includes the van der Waals effect. With these potentials the biexciton formation in bilayer systems is investigated. For coupled quantum wells the two-body scattering matrix is calculated and employed to give a modified relation between exciton density and blue shift. Such a relation is of central importance for gauging exciton densities in experiments which pave the way toward Bose-Einstein condensation of excitons

    On superconducting and magnetic properties of iron-oxypnictides

    Full text link
    Pairing symmetry in oxypnictides, a new family of multiband high-Tc superconductors, is partially imposed by the positions of multiple Fermi pockets, which itself can give rise to new order parameters, such as s+,- states or the state of dx^2-y^2 symmetry. Other pairing states may appear on small pockets for long range interactions, but they are expected to be sensitive to defects. We identify the competing antiferromagnetic order with the triplet exciton transition in the semi- metallic background and discuss whether its coexistence with superconductivity explains the doping dependence of Tc.Comment: Fig1b replace

    Anomalous tunneling of bound pairs in crystal lattices

    Full text link
    A novel method of solving scattering problems for bound pairs on a lattice is developed. Two different break ups of the hamiltonian are employed to calculate the full Green operator and the wave function of the scattered pair. The calculation converges exponentially in the number of basis states used to represent the non-translation invariant part of the Green operator. The method is general and applicable to a variety of scattering and tunneling problems. As the first application, the problem of pair tunneling through a weak link on a one-dimensional lattice is solved. It is found that at momenta close to \pi the pair tunnels much easier than one particle, with the transmission coefficient approaching unity. This anomalously high transmission is a consequence of the existence of a two-body resonant state localized at the weak link.Comment: REVTeX, 5 pages, 4 eps figure

    Quantum Response at Finite Fields and Breakdown of Chern Numbers

    Full text link
    We show that the response to an electric field, in models of the Integral Quantum Hall effect, is analytic in the field and has isolated essential singularity at zero field. We also study the breakdown of Chern numbers associated with the response of Floquet states. We argue, and give evidence, that the breakdown of Chern numbers in Floquet states is a discontinuous transition at zero field. This follows from an observation, of independent interest, that Chern numbers for finite dimensional Floquet operators are generically zero. These results rule out the possibility that the breakdown of the Hall conductance is a phase transition at finite fields for a large class of models.Comment: 16 pages, 8 eps figures, LaTeX2e with IOP style. Many changes, including new materia

    Metabolism of arginine in lactating rat mammary gland

    Full text link

    Effect of Coulomb interactions on the physical observables of graphene

    Full text link
    We give an update of the situation concerning the effect of electron-electron interactions on the physics of a neutral graphene system at low energies. We revise old renormalization group results and the use of 1/N expansion to address questions of the possible opening of a low-energy gap, and the magnitude of the graphene fine structure constant. We emphasize the role of Fermi velocity as the only free parameter determining the transport and electronic properties of the graphene system and revise its renormalization by Coulomb interactions in the light of recent experimental evidence.Comment: Proceedings of the Nobel Symposium on graphene 2010, to appear as a special issue in Physica Script

    Observations of the SW Sextantis star DW Ursae Majoris with the Far Ultraviolet Spectroscopic Explorer

    Full text link
    We present an analysis of the first far-ultraviolet observations of the SW Sextantis-type cataclysmic variable DW Ursae Majoris, obtained in November 2001 with the Far Ultraviolet Spectroscopic Explorer. The time-averaged spectrum of DW UMa shows a rich assortment of emission lines (plus some contamination from interstellar absorption lines including molecular hydrogen). Accretion disk model spectra do not provide an adequate fit to the far-ultraviolet spectrum of DW UMa. We constructed a light curve by summing far-ultraviolet spectra extracted in 60-sec bins; this shows a modulation on the orbital period, with a maximum near photometric phase 0.93 and a minimum half an orbit later. No other periodic variability was found in the light curve data. We also extracted spectra in bins spanning 0.1 in orbital phase; these show substantial variation in the profile shapes and velocity shifts of the emission lines during an orbital cycle of DW UMa. Finally, we discuss possible physical models that can qualitatively account for the observed far-ultraviolet behavior of DW UMa, in the context of recent observational evidence for the presence of a self-occulting disk in DW UMa and the possibility that the SW Sex stars may be the intermediate polars with the highest mass transfer rates and/or weakest magnetic fields.Comment: accepted by the Astronomical Journal; 36 pages, including 12 figures and 4 table

    Diagrammatic Quantum Monte Carlo for Two-Body Problem: Exciton

    Get PDF
    We present a novel method for precise numerical solution of the irreducible two-body problem and apply it to excitons in solids. The approach is based on the Monte Carlo simulation of the two-body Green function specified by Feynman's diagrammatic expansion. Our method does not rely on the specific form of the electron and hole dispersion laws and is valid for any attractive electron-hole potential. We establish limits of validity of the Wannier (large radius) and Frenkel (small radius) approximations, present accurate data for the intermediate radius excitons, and give evidence for the charge transfer nature of the monopolar exciton in mixed valence materials.Comment: 4 pages, 5 figure

    The Imprint of Gravitational Waves in Models Dominated by a Dynamical Cosmic Scalar Field

    Get PDF
    An alternative to the standard cold dark matter model has been recently proposed in which a significant fraction of the energy density of the universe is due to a dynamical scalar field (QQ) whose effective equation-of-state differs from that of matter, radiation or cosmological constant (Λ\Lambda). In this paper, we determine how the Q-component modifies the primordial inflation gravitational wave (tensor metric) contribution to the cosmic microwave background anisotropy and, thereby, one of the key tests of inflation.Comment: 15 pages, 14 figures, revtex, submitted to Phys. Rev.
    corecore