259 research outputs found

    Devitrite-based optical diffusers.

    Get PDF
    Devitrite is a novel material produced by heat treatment of commercial soda-lime-silica glass. It consists of fans of needle-like crystals which can extend up to several millimeters and have interspacings of up to a few hundred nanometers. To date, only the material properties of devitrite have been reported, and there has been a distinct lack of research on using it for optical applications. In this study, we demonstrate that randomly oriented fans of devitrite crystals can act as highly efficient diffusers for visible light. Devitrite crystals produce phase modulation of light because of their relatively high anisotropy. The nanoscale spacings between these needles enable light to be diffused to large scattering angles. Experimentally measured results suggest that light diffusion patterns with beam widths of up to 120° are produced. Since devitrite is an inexpensive material to produce, it has the potential to be used in a variety of commercial applications.HB would like to thank The Leverhulme Trust and Cambridge Philosophical Society for research funding.This is the author accepted manuscript. The final version can be found on the publisher's website at: http://pubs.acs.org/doi/abs/10.1021/nn500155e Copyright © 2014 American Chemical Societ

    On the aerodynamics of an enclosed-wheel racing car: an assessment and proposal of add-on devices for a fourth, high-performance configuration of the DrivAer model

    Get PDF
    A modern benchmark for passenger cars – DrivAer model – has provided significant contributions to aerodynamics-related topics in automotive engineering, where three categories of passenger cars have been successfully represented. However, a reference model for highperformance car configurations has not been considered appropriately yet. Technical knowledge in motorsport is also restricted due to competitiveness in performance, reputation and commercial gains. The consequence is a shortage of open-access material to be used as technical references for either motorsport community or academic research purposes. In this paper, a parametric assessment of race car aerodynamic devices are presented into four groups of studies. These are: (i) forebody strakes (dive planes), (ii) front bumper splitter, (iii) rear-end spoiler, and (iv) underbody diffuser. The simplified design of these add-ons focuses on the main parameters (such as length, position, or incidence), leading to easier manufacturing for experiments and implementation in computational studies. Consequently, a proposed model aims to address enclosed-wheel racing car categories, adapting a simplified, 35% scaled-model DrivAer Fastback shape (i.e. smooth underbody, no wheels, and with side mirrors). Experimental data were obtained at the 8ft x 6ft Cranfield Wind Tunnel using an internal balance for force and moment measurements. The aerodynamic performance of each group of add-on was assessed individually in a range of ride heights over a moving belt. All cases represent the vehicle at a zero-yaw condition, Reynolds number (car length-based) of 4.2 × 106 and Mach number equal to 0.12. The proposed high-performance configuration (DrivAer hp-F) was tested and a respective Reynolds number dependency study is also provided. In line with the open-access concept of the DrivAer model, the CAD geometry and experimental data will be made available online to the international community to support independent studies

    Protective Coatings Based on PMMA–Silica Nanocomposites Reinforced with Carbon Nanotubes

    Get PDF
    Polymethylmethacrylate–silica hybrids have been prepared using the sol–gel route by the radical polymerization of methyl methacrylate(MMA) using benzoyl peroxide (BPO) as a thermal initiator and 3-(trimethoxysilyl)propyl methacrylate(MPTS) as a coupling agent, followed by acid-catalyzed hydrolytic condensation of tetraethoxysilane (TEOS). Carbon nanotubes (CNTs) were first dispersed either by surfactant addition or by functionalization with carboxyl groups and then added at a carbon (CNT) to silicon (TEOS and MPTS) molar ratio (CCNT/SiHybrid) of 0.05% to two different hybrid matrices prepared at BPO/MMA molar ratios of 0.01 and 0.05. Films of 2–7 μm thickness deposited onto carbon steel by dip-coating were characterized in terms of their microstructure and their mechanical, thermal and anticorrosive behavior. Atomic force microscopy and optical microscopy confirmed that there was a homogeneous dispersion of CNTs in the nanocomposites and that the surfaces of the films were very smooth. X-ray photoelectron spectroscopy (XPS) confirmed the nominal composition of the films while nuclear magnetic resonance showed that the connectivity of the silica network was unaffected by CNT loading. Thermogravimetric analysis and mechanical measurements confirmed an increase of thermal stability, hardness, adhesion and scratch resistance of CNT-loaded coatings relative to those without CNTs. Electrochemical impedance spectroscopy measurements in 3.5% NaCl solution interpreted in terms of equivalent circuits showed that the reinforced hybrid coatings, prepared at the higher BPO/MMA molar ratio used in this work, act as a very efficient anticorrosive barrier, with an impedance modulus up to 109 Ω cm2

    Light scattering and optical diffusion from willemite spherulites

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.optmat.2015.12.025Willemite is a zinc silicate mineral used in modern day pottery as a decorative feature within glazes. It is produced by controlled heat treatment of zinc oxide-containing ceramic glazes. The heat-treated glazes devitrify, producing thin nanoscale needle-like willemite crystals growing in spherulitic morphologies through branching of the needles. We show here that this resulting morphology of willemite crystals in an inorganic glass matrix has a previously unreported strong interaction with light, displaying remarkable optical diffraction patterns. Thin sections of such spherulites act as optical diffusers, enabling light beams to be spread up to 160? in width. Analysis of the interaction between the willemite spherulites and light suggests that the high density of willemite crystals in the spherulites and the length scales associated with both the thickness of the needles and the spacings between branches are together responsible for this optical diffusion behaviour

    Serum phosphatidylinositol as a biomarker for bipolar disorder liability

    Get PDF
    Objectives Individuals with bipolar disorder (BPD) exhibit alterations in their phospholipid levels. It is unclear whether these alterations are a secondary consequence of illness state, or if phospholipids and illness risk overlap genetically. If the latter were true, then phospholipids might provide key insights into the pathophysiology of the illness. Therefore, we rank-ordered phospholipid classes by their genetic overlap with BPD risk in order to establish which class might be most informative in terms of increasing our understanding of illness pathophysiology. Methods Analyses were conducted in a sample of 558 individuals, unselected for BPD, from 38 extended pedigrees (average family size=14.79, range=2–82). We calculated a coefficient of relatedness for all family members of nine individuals with BPD in the sample (N=185); this coefficient was set to be zero in unrelated individuals (N=373). Then, under an endophenotype ranking value (ERV) approach, this scalar index was tested against 13 serum-based phospholipid concentrations in order to rank-order lipid classes by their respective overlap with BPD risk. Results The phosphatidylinositol class was significantly heritable (h2=0.26, P=6.71 × 10−05). It was the top-ranked class, and was significantly associated with BPD risk after correction for multiple testing (β=−1.18, P=2.10 × 10−03, ERV=0.49). Conclusions We identified a peripheral biomarker, serum-based phosphatidylinositol, which exhibits a significant association with BPD risk. Therefore, given that phosphatidylinositol and BPD risk share partially common etiology, it seems that this lipid class warrants further investigation, not only in terms of treatment, but also as a promising diagnostic and risk marker

    The Lipidome in Major Depressive Disorder: Shared Genetic Influence for Ether-Phosphatidylcholines, a Plasma-Based Phenotype Related to Inflammation, and Disease Risk

    Get PDF
    Background The lipidome is rapidly garnering interest in the field of psychiatry. Recent studies have implicated lipidomic changes across numerous psychiatric disorders. In particular there is growing evidence that the concentrations of several classes of lipids are altered in those diagnosed with MDD. However, for lipidomic abnormalities to be considered potential treatment targets for MDD (rather than secondary manifestations of the disease), a shared etiology between lipid concentrations and MDD should be demonstrated. Methods In a sample of 567 individuals from 37 extended pedigrees (average size 13.57 people, range = 3–80), we used mass-spectrometry lipidomic measures to evaluate the genetic overlap between twenty-three biologically distinct lipid classes and a dimensional scale of MDD. Results We found that the lipid class with the largest endophenotype ranking value (ERV, a standardized parametric measure of pleiotropy) were ether-phosphodatidylcholines (alkylphosphatidylcholine, PC(O) and alkenylphosphatidylcholine, PC(P) subclasses). Furthermore, we examined the cluster structure of the twenty-five species within the top-ranked lipid class, and the relationship of those clusters with MDD. This analysis revealed that species containing arachidonic acid generally exhibited the greatest degree of genetic overlap with MDD. Conclusions This study is the first to demonstrate a shared genetic etiology between MDD and ether-phosphatidylcholine species containing arachidonic acid, an omega-6 fatty acid that is a precursor to inflammatory mediators, such as prostaglandins. The study highlights the potential utility of the well-characterized linoleic/arachidonic acid inflammation pathway as a diagnostic marker and/or treatment target for MDD
    • …
    corecore