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Abstract

Polymethylmethacrylate–silica hybrids have been prepared using the sol–gel route by
the  radical  polymerization  of  methyl  methacrylate(MMA)  using  benzoyl  peroxide
(BPO) as a thermal initiator and 3-(trimethoxysilyl)propyl methacrylate(MPTS) as a
coupling agent, followed by acid-catalyzed hydrolytic condensation of tetraethoxysi‐
lane  (TEOS).  Carbon  nanotubes  (CNTs)  were  first  dispersed  either  by  surfactant
addition or by functionalization with carboxyl groups and then added at a carbon (CNT)
to silicon (TEOS and MPTS) molar ratio (CCNT/SiHybrid) of 0.05% to two different hybrid
matrices prepared at BPO/MMA molar ratios of 0.01 and 0.05. Films of 2–7 μm thickness
deposited  onto  carbon  steel  by  dip-coating  were  characterized  in  terms  of  their
microstructure and their mechanical, thermal and anticorrosive behavior. Atomic force
microscopy  and  optical  microscopy  confirmed  that  there  was  a  homogeneous
dispersion of CNTs in the nanocomposites and that the surfaces of the films were very
smooth. X-ray photoelectron spectroscopy (XPS) confirmed the nominal composition of
the films while nuclear magnetic resonance showed that the connectivity of the silica
network was unaffected by CNT loading. Thermogravimetric analysis and mechani‐
cal measurements confirmed an increase of thermal stability, hardness, adhesion and
scratch resistance of CNT-loaded coatings relative to those without CNTs. Electro‐
chemical impedance spectroscopy measurements in 3.5% NaCl solution interpreted in
terms of equivalent circuits showed that the reinforced hybrid coatings, prepared at the
higher BPO/MMA molar ratio used in this work, act as a very efficient anticorrosive
barrier, with an impedance modulus up to 109 Ω cm2.

Keywords: organic–inorganic hybrids, carbon nanotubes, mechanical reinforcement,
structural properties, anticorrosive coating
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1. Introduction

Organic–inorganic hybrids are a class of nanocomposite materials, which combine different
components on the molecular or nanometric scale, resulting in hybrid systems that not only
reflect the sum of the properties of the individual components but also are new materials with
unique features. The blend of organic and inorganic phases interacting on the molecular scale
combines properties such as processability, flexibility and hydrophobicity of the polymeric
organic phases with thermal, chemical and mechanical stability of inorganic ceramic com‐
pounds. The nature, size and compatibility of the organic and inorganic phases are of critical
importance, because they determine the transparency, homogeneity and stability of the hybrid
material. The nature of the bonding at the interface between the phases is of particular signifi‐
cance for this class of nanocomposites. This can be used to classify these hybrid materials: the
presence of relatively weak bonding such as van der Waals, dipole–dipole, hydrogen or ionic
bonding is characteristic of a class I hybrid material, while strong covalent or ionic–covalent
chemical bonding are both characteristic of class II hybrid materials [1].

The sol–gel process is possibly the most suitable method for the synthesis of hybrid materials
because of the relatively mild synthesis conditions, the environmental compatibility, and, in
particular, the possibility of combining a large number of precursors in different proportions.
The simultaneous hydrolytic condensation of the inorganic precursor and polymerization of
the organic species produces homogeneous nanocomposites with tunable properties. The
multifunctionality of hybrid materials enables them to be used in a variety of applications such
as drug delivery systems, optical and electrical devices, catalysts, photochromic devices and
protective coatings [1, 2].

Among the large number of reported organic–inorganic nanocomposite systems, in which
polymers such as epoxy, polyimide, acrylic and polyethylenimine phases are combined with
inorganic oxides such as silica, alumina, zirconia, titania and ceria, one important hybrid class
is the polymethylmethacrylate–silica (PMMA–silica) system. PMMA–silica nanocomposites
have recently received considerable attention because of their ability to protect a wide variety
of metal surfaces such as steels, stainless steels, aluminum alloys and magnesium alloys in an
efficiently and environmentally compliant manner [3–5]. These alloys are particularly impor‐
tant for key industries such as the aerospace, automotive and offshore companies. However,
most of these alloys suffer severe corrosion in maritime environments and even humid
environments and therefore need appropriate surface passivation to survive for long periods
in aggressive environments.

Corrosion is a spontaneous and irreversible reaction between a metal surface and its environ‐
ment, resulting in significant economical losses, the failure of critical components and
environmental problems. The prevention of corrosion, or at least its mitigation, is therefore
one of the main challenges industrially worldwide. The application of protective coatings such
as paints or resins, or those based on ceramic materials, is the most common way to improve
the durability of metallic alloys significantly. However, organic coatings are relatively thick
and can suffer poor thermal and mechanical stability and also a lack of adhesion, while coatings
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based solely on ceramic materials are likely to be porous and suffer from intrinsic stress-
induced cracking, leading to thickness limitations [3, 6].

Therefore, organic–inorganic hybrids have been developed to overcome the limitations of
traditional coatings, forming an efficient and durable corrosion protection system for metallic
surfaces. In the case of PMMA–silica hybrid nanocomposites, this corrosion protection is a
consequence of the covalent bonding between PMMA and silica nodes through the coupling
agent 3-(trimethoxysilyl)propyl methacrylate (MPTS), formed by three methoxy-silane groups
linked by a nonhydrolysable Si–C bond to a methacrylate tail. This bonding mechanism
produces a class II hybrid with a nanostructure of dense silica cross-link nodes bridged by
short polymeric chains. As a consequence, the closely packed nanostructure acts as an efficient
corrosion barrier against the uptake of aggressive agents [3, 4].

One drawback of most organic-inorganic hybrids is their relatively high polymer content of
60–80%; this leads to a reduced mechanical and thermal stability of these materials relative to
ceramic systems. To overcome this limitation, carbon nanotubes (CNTs), known for their
exceptional mechanical and thermal properties, are regarded as being the most suitable
nanostructures to reinforce polymeric and hybrid materials. Thus, for example, in a recent
study, Nafion® modified functionalized multiwall CNTs were dispersed in a PMMA–silica
nanocomposite at carbon-to-silicon molar ratios of 0.1%, 1.0% and 5.0% [7]. The results of this
study showed that the CNTs could be dispersed efficiently within the nanocomposite and that
their presence did not affect the connectivity of the hybrid network. In addition, the coatings
were able to maintain their high corrosion resistance, with an impedance modulus of about
107 Ω cm2 in 3.5% NaCl solution [7]. However, no mechanical tests were performed in this
study.

Other studies also report on hybrids and, in particular, on polymers modified by CNTs [8–
10]. The development of nanocomposites with improved electrical conductivity, thermal
stability and mechanical strength by incorporation of CNTs are the most cited objectives in
these studies. For polyethylene–CNT composites containing CNTs in the range of 1–2.5 wt.%,
an increase in electrical conductivity up to six orders of magnitude has been observed [8]. A
uniform dispersion of CNTs in a polypropylene (PP) matrix has been shown to produce a
substantial increase in thermal stability at extremely low loading levels of CNTs, attributed to
the relatively large interfacial area common to the PP chains and the free radial scavenging
CNTs [9]. For epoxy–CNT nanocomposites, in which the epoxy resin matrix was modified
with 0.1 wt.% of amino-functionalized CNTs, an improvement in strain to fracture and an
increase in Young’s modulus from 3.29 GPa for the neat resin to 3.50 GPa for the nanocomposite
have both been reported [10].

Protective hybrid coatings, modified with CNTs, have also been subject of a number of recent
studies. Thus, for example, Fe3O4 nanoparticles attached to CNTs have been incorporated
successfully at a concentration level of 3 wt.% into epoxy resin coatings deposited on carbon
steel [11]. Experimental results showed a significant increase of coating adhesion and corrosion
protection efficiency relative to coatings without both the Fe3O4 nanoparticles and the CNTs
[11]. Epoxy–CNT composite coatings deposited on aluminum alloy 2024-T3 substrates at CNT
levels of 0.1 wt% or 0.5 wt% showed a similar result with an improvement in adhesion strength,
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wear resistance and rate of corrosion with CNT loading, the latter explained by a CNT-induced
decrease of the level of open porosity within the coating [12]. Polypyrrole (PPy) coatings
containing low levels of CNTs and chitosan deposited on St-12 steel have shown a significant
improvement in corrosion protection relative to PPy coatings with an increase in the corrosion
resistance in 3.5% NaCl solution from 176 Ω cm2 for pure PPy to 861 Ω cm2 for PPy–CNT–
chitosan coatings [13]. This was attributed to the improved density and more compact structure
of the PPy–CNT–chitosan composite relative to the pure PPy coatings [13]. A study of the
corrosion protection performance of poly(N-methylpyrrole)-dodecylsulfate/CNT composite
coatings on SAE 304 stainless steel was performed in 0.5 mol L−1 H2SO4 solution [14]. In these
coatings, the CNTs were added as a second layer on top of the poly(N-methylpyrrole)-
dodecylsulfate base layer, either by electrodeposition or by dispersing the CNTs in a Nafion®
solution. The results also confirmed a significantly improved corrosion protection of the base
layer coated with the Nafion®-dispersed CNTs. This was attributed by these authors to the
electrostatic repulsion of corrosive anionic species by the negatively charged CNTs and
Nafion® containing surface layers [14]. Using a similar strategy, a conductive coating based
on PPy has been modified with 0.25–1 at.% of functionalized and nonfunctionalized CNTs and
coated on 60/40 α/β brass [15]. The observed improvement of corrosion protection efficiency
of the brass in 3.5% NaCl solution relative to coatings without CNTs was explained by the
authors in terms of an increase in electrical conductivity of the CNT-loaded coatings to help
form anodically protecting passive oxide films on the metal and also to the increase in
tortuosity of the paths corrosive ions have taken through the coating to reach the passive film
in order to attack it chemically [15]. The ability for deliberately undercured coatings with 20
wt.% of CNTs and microcapsules containing electrically conductive epoxy resin with self-
healing property has also been demonstrated [16]. In this work, Bailey et al. used a novel
electrotensile test. Upon cracking of the undercured coating during tensile testing, microcap‐
sules in the crack path release the healing solvent ethyl phenyl acetate (EPA), enabling the
subsequent reaction with residual hardener in the vicinity of the crack to make the matrix swell
locally and cause cracks to be closed [16].

It is important to note that most as-synthesized CNTs consist of large aggregates or bundles
insoluble both in water and in common organic solvents because of their enhanced polariza‐
bility induced by their cylindrical shape and hence the strong van der Waals’ interactions
between individual nanotubes [17]. Efficient dispersion of CNTs in a polymer matrix requires
the initial disentanglement of these large aggregates and chemical compatibility between the
CNTs and the polymer matrix to maintain a homogeneous and stable composite structure.
This chemical compatibility can be induced either by preselecting a matrix which interacts
electrostatically with CNTs or by modifying the interaction potential between the CNTs and
the polymer by functionalization. A suitable functionalization of CNTs is able to increase their
electrostatic potential, thereby reducing their tendency to agglomerate [9]. However, it is
evident that if harsh treatment conditions are used, such as prolonged sonication or excessive
chemical treatment, a high level of damage to the hexagonal nanotube structure can occur,
leading to a significant loss of mechanical and electrical performance of the CNTs.
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Alternative approaches have been developed to disperse individual CNTs by noncovalent
functionalization employing a wrapping agent, typically a surfactant or an organic polymer.
A successful separation of CNTs leading to a stable suspension in aqueous solutions of sodium
dodecyl sulfate (SDS) surfactant with coaddition of saturated fatty acids was recently dem‐
onstrated [17]. Following on from previous work on PMMA–silica coatings containing CNTs
[7], we have successfully prepared CNT-reinforced protective hybrid coatings on carbon steel
in this study. The uniform dispersion of CNTs in the PMMA–silica matrix was accomplished
using two different pretreatments: the functionalization by carboxylic groups and surfactant
assistance using SDS for subsequent introduction in the PMMA–silica hybrids. Particular
attention was paid to the extent to which CNTs could be incorporated successfully into the
PMMA–silica matrix without compromising the excellent anticorrosive characteristics of the
hybrids. The effects of the inclusion of CNTs on the morphological, structural, thermal,
mechanical and electrochemical properties of the hybrid matrix were evaluated by optical and
atomic force microscopy (AFM), nuclear magnetic resonance, X-ray photoelectron spectrosco‐
py (XPS), mechanical testing and electrochemical impedance spectroscopy (EIS).

2. Experimental

2.1. Synthesis

All reagents were purchased from Sigma-Aldrich and used as received, apart from the methyl
methacrylate monomer, which had been distilled before use to remove the ≤30 ppm amount
of 4-methoxyphenol added as a polymerization inhibitor. The PMMA–silica hybrid synthesis
consisted of radical polymerization of methyl methacrylate (MMA) and 3-(trimethoxysil‐
yl)propyl methacrylate (MPTS) using the thermal initiator benzoyl peroxide (BPO) and
tetrahydrofuran (THF) as a solvent, followed by hydrolysis and polycondensation of tetrae‐
thoxysilane (TEOS) and MPTS silane sites, catalyzed by nitric acid (pH 1). The following molar
ratios were kept constant: MMA/MPTS = 8, TEOS/MPTS = 2, H2O/Si = 3.5 and ethanol/H2O =
0.5. The BPO/MMA molar ratio was fixed at a value of 0.01 and 0.05 to study the influence of
CNTs in two different matrices designated BPO0.01 and BPO0.05.

The TEOS, MPTS and MMA molecular structures are shown in Figure 1. The siloxane bridges
(C–Si–O) between the organic and the inorganic phase were derived from MPTS, a modified
silicon alkoxide with a methacrylate group which acts as a coupling agent between the organic
component, PMMA (polymerized MMA), and the inorganic component, silica. In the presence
of acidified water, TEOS and MPTS form a silica network through sol–gel hydrolysis and
condensation reactions, a process that converts a colloidal suspension (the sol) into a three-
dimensional network (the gel). First, the alkoxy groups (O–CH2–CH3 and O–CH3) are hydro‐
lysed, forming silanol groups (Si–OH) and eliminating alcohol molecules (HO–CH2CH3 and
HO–CH3), and then silanol groups can react with one another or the initial reagent to yield Si–
O–Si bonds [18].
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Figure 1. Molecular structures of the synthesis reagents.

Single-wall CNTs were purchased from Dropsens for incorporation into the two hybrids
BPO0.01 and BPO0.05. In one pretreatment prior to their incorporation, the CNTs were
dispersed using the method described by Alves da Cunha et al. [17], in which aqueous
solutions of SDS surfactant (Sigma-Aldrich) and hexadecanoic acid (palmitic acid, Sigma-
Aldrich) are used. The dispersion procedure, schematized in Figure 2a, starts from raw CNTs
and is based on the nonpolar groups of SDS and palmitic acid promoting physical interaction
with CNTs, while polar groups of these two chemicals interact with water [17]. After dispersion
in SDS and palmitic acid, the CNTs were added at the end of the PMMA–silica hybrid
synthesis, at a CCNT/SiHybrid molar ratio of 0.05%, to the two matrices BPO0.01 and BPO0.05. The
two nanocomposites produced in this manner were designated BPO0.01_CNT_SDS and
BPO0.05_CNT_SDS, respectively.

In addition to the SDS method, dispersion through functionalization with carboxyl groups was
also studied. In the second method, 0.1 g of CNTs was first put in a flask containing 75 ml of
concentrated sulfuric acid (H2SO4, Sigma-Aldrich) and 25 ml of concentrated nitric acid
(HNO3, Sigma-Aldrich). The CNT-containing solution was then heated and stirred under
reflux at 70°C for 2 h followed by 30°C for 4 h. Then, the functionalized CNTs were filtered
through an ANOPORE 0.02 μm pore size membrane and washed with distilled water until
the pH was 6. After this, drying was carried out at 70°C for 4 h under vacuum and at 200°C
for 4 h in air (Figure 2b). The oxidation procedure with nitric acid and sulfuric acid adds
carboxyl groups at the walls of the CNTs and enhances their solubility in the PMMA–silica
hybrid. These functionalized CNTs (CNTCOOH) were dispersed using Nafion® and incor‐
porated into BPO0.05 matrix in the inorganic phase at a CCNT/SiHybrid molar ratio of 0.05%. The
nanocomposite produced in this manner was designated BPO0.05_CNTCOOH.

After synthesis, the five homogeneous and transparent hybrid sols were used to deposit films
onto 2.5 cm x 2.5 cm x 0.4 cm A1020 carbon steel substrates by dip-coating (3 immersions, each
of 1 min, at a withdrawal rate of 14 cm min−1, with air-drying intervals of 10 min between dips),
with the remainder of the solutions placed in Teflon holders to obtain unsupported films, and
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then heat-treated initially at 60°C for 24 h, followed by 160°C for 3 h. Prior to being dipped,
the carbon steel substrates had all been sanded with 100, 300, 600 and 1500 grit sandpaper,
washed with isopropanol for 10 min in an ultrasound bath and dried under nitrogen.

Figure 2. Experimental procedure for the dispersion of carbon nanotubes by (a) interaction with SDS and palmitic acid
and (b) functionalization with carboxyl groups.

2.2. Characterization techniques

A JEOL 71500F field-emission gun scanning electron microscope (FEG-SEM) was used to
acquire micrographs of raw and dispersed CNTs.

XPS was used for characterization of the CNTs and the hybrids by extracting the elemental
compositions and monitoring the local bonding structure of carbon (C 1s), oxygen (O 1s) and
silicon (Si 2p) Measurements were performed in a UNI-SPECS UHV surface analysis system,
using Mg Kα radiation (hν = 1253.6 eV) and a pass energy of 10 eV for high-resolution spectra.
The inelastic background of the C 1s, O 1s and Si 2p photoemission peaks was subtracted using
the Shirley baseline. The displacement due to charge accumulation was corrected by fixing the
C–H component of the C 1s spectrum at 285.0 eV. The surface composition was determined
from peak intensities corrected by the orbital sensitivity factors of the corresponding elements.
The CasaXPS processing software was used for deconvolution of the spectra using combina‐
tions of Gaussian and Lorentzian functions (Voigt profiles) for analysis of the chemical bonding
structure.

29Si nuclear magnetic resonance spectroscopy (29Si-NMR) measurements in the solid state were
performed in a Varian Inova spectrometer operating at 300 MHz and 7.05 T, using a Larmor
frequency of 59.59 Hz and tetramethyl silane (TMS) as an external standard. The spectra were
obtained from Fourier transforms following a single excitation pulse of π/2 with a relaxation
time of 2 s. The CasaXPS processing software was used for deconvolution of the spectra using
Voigt profiles.
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The thickness of each coating was determined using a Filmetrics F3-CS optical interference
system. AFM was used to evaluate the surface morphology of the coatings and to determine
their roughness. Agilent Technologies Model 5500 and NX10 Park System atomic force
microscopes were used in tapping mode with a silicon cantilever. The results were analyzed
using Gwyddion software. RMS (root mean square) roughness values were obtained from 1
μm × 1 μm topography images of the hybrid coatings deposited on the A1020 carbon steel.

Thermogravimetric analysis (TGA) of the five unloaded and CNT-loaded hybrids, each in the
form of unsupported films, were carried out in a TA Instruments STD Q600 analyzer. The
samples were heated at a rate of 5°C min−1 from 25°C to 800°C, under 100 mL min−1 of nitrogen
flow.

Nanoindentation measurements were carried out in a Nano Indenter® XP system, MTS,
equipped with TestWorks 4 Professional level software. A diamond tip with Berkovich
geometry was used. For each sample, nine measurements were performed, with 100 μm
spacing between each indentation. The input parameters were Poisson ratio (0.35), depth limit
(140 nm), allowable drift rate (0.8 nm/s), frequency target (45 Hz) and percent unload in
stiffness calculation (50%). Use of the continuous stiffness measurement (CSM) method
allowed the continuous determination of the contact stiffness during loading, providing more
accurate results. This was achieved by superimposing a small oscillation on the primary
loading signal and by analyzing the resulting response of the system using a lock-in amplifier.
The hardness and elastic modulus were obtained as a continuous function of depth from a
comparison of samples indented in the range of 60–120 nm. To avoid effects on the nanome‐
chanical properties of the films from the underlying steel substrates, the maximum penetration
depth for the indentation experiments was set at less than 10% of the coating thickness [19].

Microscratch measurements were performed using homemade equipment at the National
Physical Laboratory (Teddington, London, U.K.) to evaluate the scratch resistance and the
adherence of the coatings to the A1020 carbon steel substrates. For each sample, 3 parallel
tracks of 6 mm length with 1 mm spacing between the tracks were made using a linearly
increasing load (from 2 mN to 100 mN), with a diamond tip with spherical conical geometry
and 10 μm radius. For CNT-loaded hybrids, further microscratch experiments were under‐
taken where the load was increased up to a maximum of 240 mN. The measurements also
provided the coefficient of friction as a function of the track distance. The tracks were analyzed
using a Nikon Measuring Microscope MM-60, coupled with a Nikon SC-213 Digital Counter,
which enabled the critical load at which delamination started to be determined.

The anticorrosion efficiency of the hybrid coatings deposited on the A1020 carbon steel was
analyzed by EIS using a Gamry Potentiostat Reference 600. The impedance data were collected
once a week, until failure, over a frequency range from 10−2 Hz to 104 Hz with 10 points per
decade and signal amplitude of 10 mV (rms) in an electrochemical cell containing 80 ml of 3.5%
NaCl solution at 25°C. The electrochemical cell consisted of a Ag|AgCl|KClsat reference
electrode, a platinum mesh counter electrode, a platinum electrode connected to the reference
electrode through a 0.1 μF capacitor and the working electrode of either coated or uncoated
carbon steel. The experimental data were fitted with equivalent electrical circuits using Zview
software to analyze the EIS response.
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3. Results and discussion

3.1. CNT characterization

Van der Waals’ forces between CNTs cause their agglomeration in the form of dense bundles.
Commercial CNT powder consists of dense particles (Figure 3a), which comprises the bundles
of CNTs (Figure 3b). It is evident from Figure 3c and Figure 3d that both procedures used for
dispersing the CNTs were successful.

Figure 3. FEG-SEM micrographs of carbon nanotubes (a, b) commercial powder, (c) dispersed in SDS and palmitic acid
and (d) functionalized and dispersed in the precursor solution.

CNTs have a peculiar XPS C 1s spectrum with the presence of a predominant aromatic C-C-
sp2 component and characteristic π plasmon transitions, the intensities of which scale with the
degree of order of the hexagonal carbon structure. XPS C 1s spectra of pure and functionalized
CNTs are presented in Figure 4. Quantitative XPS analysis can detect all elements except
hydrogen and helium. Discounting the presence of hydrogen, the raw CNTs are composed of
93.2 at.% of carbon and 6.8 at.% of oxygen (Figure 4a), partially related to surface contamination
by oxygenated hydrocarbon groups of adventitious carbon. The following characteristics
indicate a highly aromatic structure: the presence of plasmon peaks (collective π → π*
transitions at ~291 eV and ~394 eV) and the narrow and intense component related to aromatic
C-C-sp2bonds (284.4 eV) with FWHM (full width at half maximum) of about 0.9 eV and a peak
area of 65.5% [20]. The high energy components related to C–O, C=O and O–C=O bonds, which
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can also be observed in the O 1s XPS spectrum (Figure 4b), show the presence of ether/alcohol,
carbonyl and carboxyl groups on the surface of the nanotubes, associated mainly with the
presence of adventitious carbon responsible for the C–H component at ~285 eV. After func‐
tionalization, the O–C=O component increases significantly (Figure 4c and 4d) due to the
linking of these groups to the walls of the nanotubes, aiding the dispersion of CNTs in the
hybrid matrix through their polarity. The degree of functionalization of nanotube walls
defined as the intensity ratio I(O–C=O)/I(C-C-sp2) was 0.3.

Figure 4. (a) C 1s and (b) O 1s XPS spectra of the as-received CNTs and (c) C 1s and (d) O 1s XPS spectra of functional‐
ized CNTs.

3.2. PMMA–silica hybrid characterization

3.2.1. Surface morphology

All the PMMA–silica hybrid coatings deposited on the A1020 carbon steel were transparent
with a homogeneous, colorless appearance. A representative image of one of the 2.5 cm x 2.5
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cm x 0.4 cm coated samples is shown in Figure 5a. Inspection by optical microscopy performed
on free standing hybrids in transmission mode confirmed the uniformity of these coatings (e.g.,
Figure 5b) and indicate a very good dispersion of CNTs in the nanocomposites.

Figure 5. (a) Representative image of BPO0.01_CNT_SDS coating deposited on A1020 carbon steel and (b) optical mi‐
croscopy image showing a detail of the BPO0.01_CNT_SDS transparent film. Parallel lines in (b) are related to the steel
substrate morphology.

One effect caused by increasing the BPO/MMA molar ratio from 0.01 to 0.05 was the reduced
gel time of the hybrid sol. This occurred because of the enhanced polymerization rate induced
by the increase in the number of radicals of the BPO thermal initiator, leading to a higher
viscosity of the solution. In addition to this effect, the inclusion of CNTs also increased the
viscosity of the solution prior to dip coating. Together, these two effects account for the trend
in the observed hybrid coating thicknesses shown in Table 1.

Sample name BPO/MMA molar ratio Thickness (µm) Surface RMS roughness (nm)

BPO0.01 0.01 2.8 0.4

BPO0.01_CNT_SDS 0.01 5.7 0.4

BPO0.05 0.05 3.5 0.4

BPO0.05_CNT_SDS 0.05 6.6 0.5

BPO0.05_CNTCOOH 0.05 4.9 0.2

Table 1. Thickness and surface roughness of pure and CNT-containing PMMA–silica hybrids prepared at different
BPO/MMA molar ratios.

AFM topography images obtained for pure PMMA–silica films and for those containing well-
dispersed CNTs showed that each of the five hybrids presented a very smooth and uniform
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surface morphology (Figure 6). No defects, pores, cracks or inhomogeneities were observed
on the coated samples. The RMS roughness (RRMS) extracted from AFM measurements (Table
1) showed very low values of <0.5 nm for all coatings, confirming the homogeneity of the films
and the efficient dispersion of CNTs within the hybrid matrices. The BPO0.01_CNT_SDS
surface morphology is shown in the high-resolution AFM image in Figure 7. The local
smoothness of the surface is confirmed in this image, while there is also indication for a possible
presence of a single CNT on the surface.

Figure 6. AFM images of all hybrid coatings deposited on carbon steel.

Figure 7. High-resolution AFM image of the BPO0.01_CNT_SDS sample.
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3.2.2. Bonding structure

XPS analysis showed that the composition of all hybrids was very similar, with values close
to the nominal atomic percentages of 62 at.% of carbon, 32 at.% of oxygen and 6 at.% of silicon,
with an experimental error of ±5%. Representative spectra of carbon, oxygen and silicon,
deconvoluted into their structural components, are presented in Figure 8. The C 1s spectrum,
shown in Figure 8a, has four components related to C–H, C–C–O, C–O and O–C=O bonds
present in the PMMA and MPTS molecules (Figure 8d) [21]. The carbon underlined corre‐
sponds to the atom that was analyzed. The O 1s spectrum (Figure 8b) was fitted with three
components, associated with O–C=O and O=C bonds of PMMA and MPTS, and O–Si bonds
of the inorganic network, observed also in the Si 2p spectrum (Figure 8c). For completely
condensed SiO2 phase the well-known binding energy of the Si 2p peak is located at 103.5±0.2
eV [21]. As the condensation reaction was incomplete, it is possible that the observed binding
energy shift to a lower value of 103.1 eV is caused by some remaining silanol groups (Si–OH)
from TEOS and MPTS hydrolysis and condensation. The addition of CNTs to the PMMA–silica
hybrids had no effect on the XPS spectra because the additional carbon concentration level of
500 ppm from the nanotubes was below the 3000 ppm detection limit of carbon.

Figure 8. Representative (a) C 1s, (b) O1s and (c) Si 2p XPS spectra of a PMMA–silica hybrid and (d) a schematic of the
PMMA–silica hybrid structure.

Protective Coatings Based on PMMA–Silica Nanocomposites Reinforced with Carbon Nanotubes
http://dx.doi.org/10.5772/62808

207



29Si-NMR analysis also allows the identification of the local chemical bonding structure and
the quantitative evaluation of the connectivity of the inorganic phase. To determine the
influence of the CNTs on the inorganic silica network, NMR was used to compare the pure
and CNT-containing hybrids. Representative spectra are shown in Figure 9 for a CNT-
containing sample and a pure sample. Both spectra have two groups of peaks corresponding
to Ti (i = 1, 2, 3) and Qj (j = 2,3,4) structures shown in Figure 10. These two forms of local
structures arise as a consequence of the MPTS and TEOS precursor species, respectively. The
peaks at chemical shifts of −45, −55 and −63 ppm correspond to T1, T2 and T3 environments,
respectively, while the peaks at chemical shifts at −90, −100 and-110 ppm are associated with
Q2, Q3 and Q4 environments, respectively (Figure 10) [22]. The connectivity of the inorganic
phase, defined as degree of polycondensation (Cd), was determined from the fitted Voigt
profiles using the following equation:

1 2 3 41 2 3

d
Q 2Q 3Q 4QT 2T 3TC 1003 4

æ ö+ + ++ += + ´ç ÷
è ø

(1)

The degree of polycondensation determined for BPO0.01 was 78±1%, meaning that about 80%
of the silicon atoms are bonded to other silicon atoms through Si–O–Si oxygen bridges. Similar
Cd values were obtained for the CNT-containing hybrid BPO0.01_CNT_SDS, indicating that
CNT loading did not affect the connectivity of the silica phase.

Figure 9. 29Si-NMR spectrum from the BPO0.01 and BPO0.01_CNT_SDS samples.
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Figure 10. Schematic representation of Ti and QJ structures. ‘R’ indicates OH or OCH3 groups in MPTS or OCH2CH3 in
TEOS.

3.2.3. Thermal properties

Thermogravimetry examines the overall connectivity of the hybrid network in terms of the
thermal stability of the hybrid materials in different atmospheres. Under nitrogen, PMMA
degrades in 3 events as the temperature increases: scission of head-to-head linkages at about
200°C (T1), scission of vinylidene chain-ends at about 300°C (T2) and finally random scissions
of the polymer chains due to the rupture of head–tail segments at about 400°C (T3) [23, 24].
The T4 event at higher temperatures around 500°C is due to the dehydration of the remaining
silanol groups of the silica network, detected in the XPS Si 2p spectra of Figure 8 [23]. Ther‐
mogravimetric (TG) curves and their derivatives (differential thermogravimetry curves – DTG
curves) for all the hybrid samples are shown in Figure 11. The onset temperature, T0, which is
a measure of the thermal stability of each material, is defined as the temperature at which a 5
% weight loss occurs. The temperatures of all events and the percentages of the silica and
graphitic residues at 800°C are listed for the five hybrid samples in Table 2.

Comparing the DTG results obtained for the BPO0.01 and BPO0.05 matrices (Figure 11b), it is
apparent that the higher quantity of BPO leads to an increase in the degree of polymerization
and thus to a higher thermal stability, so that the low-temperature events seen in BPO0.01 are
suppressed in BPO0.05. It can be seen from the data in Table 2 that all five hybrids are stable
up to 200°C, with sample BPO0.01_CNT_SDS having the highest thermal stability (220°C).
Furthermore, considering that the T4 peak related to the dehydration of silanol is almost
constant and that all loaded samples have the same CNT concentration, the residue formed
mainly of pure silica (SiO2) and some remaining graphitic phase can be used to estimate the
fraction of the organic phase. The observation that hybrids prepared at the lower BPO to MMA
ratio of BPO0.01 have about 4% higher amount of residue than those synthesized at the higher
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ratio of 0.05 is consistent with an increase in polymerization and a higher fraction of the
polymeric phase in the BPO0.05-based samples.

It is also interesting to note that the addition of the CNTs to BPO0.01 enhanced its thermal
stability. In addition to the 15°C increase in T0, the first two depolymerization events (T1 and
T2) shifted by about 50°C to higher temperatures (Table 2). The T3 disintegration event
increased by 20°C. This result is similar to that found by Jin et al. [25], in which T3 was shifted
upwards by 30°C for a PMMA matrix containing 26 wt.% of CNTs, a concentration significantly
higher than reported in this work. The retardation effect was attributed by Jin et al. to inter‐
actions between the carbon nanostructure and macroradicals generated during the depoly‐
merization, as suggested by Troitskii et al. [26]. In contrast, the BPO0.05 matrix shows values
of the thermal degradation events almost unchanged by the presence of CNTs. Compared to
the BPO0.01 matrix, this behavior can be understood in terms of a more stable structure of the
BPO0.05 matrix induced by the higher degree of polymerization.

Figure 11. (a) TG curves and (b–d) DTG curves of the five hybrid samples.
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Hybrid T0 (°C) T1 (°C) T2 (°C) T3 (°C) Residue (%)

BPO0.01 205 210 290 385 24.0

BPO0.01_CNT_SDS 220 255 355 390 25.1

BPO0.05 208 220 310 390 21.1

BPO0.05_CNT_SDS 209 220 310 390 19.8

BPO0.05_CNTCOOH 192 220 310 385 20.1

T0: Temperature of 5% weight loss, and temperatures T1 of the first, T2 of the second and T3 of the third degradation
event.

Table 2. The characteristic temperatures of the degradation events of PMMA–silica hybrid and the residue percentage
obtained by thermal analysis in nitrogen atmosphere.

Our work and a number of other studies investigating the reinforcement effects by CNTs in
diverse organic and hybrid matrices all come to the same conclusion: the modification
improves the thermal stability of the composite. Thus, for example, in a recent study, Sabet et
al. [27] used 5 wt.% of multiwall CNTs (MWCNTs) functionalized with carboxylic groups to
reinforce an organic–inorganic hybrid matrix based on polyhedral oligomeric silsesquioxane
(POSS). The approach involved a covalent conjugation between the CNTs and the POSS
molecules through amide bonds. These authors observed that the decomposition under
nitrogen of the neat POSS started at 265°C, and a complete weight loss was observed at 500°C.
The POSS–MWCNT composite exhibited a fairly stable thermal behavior from room temper‐
ature to 200°C, and only 40% of weight loss by 1000°C measured by TGA.

Zhang et al. [28] coated functionalized MWCNTs with silica nanospheres, and subsequently
introduced these into PMMA at a loading level of 4.28 wt.% to make it more flame resistant.
TGA of the resultant PMMA/silica/MWCNT nanocomposites heated at 20°C min−1 indicated
that the MWCNT/silica combination not only increased the temperature indicating 5% weight
loss from 300°C of PMMA to 343°C, but also the temperature of the maximum rate of degra‐
dation increased from 338°C for PMMA to 387°C for the nanocomposites. These results,
supported by cone calorimeter tests and scanning electron microscopy, showed that the
MWCNT/silica combination introduced into the PMMA noticeably improved the thermal
stability and flame retardancy of PMMA by in effect forming a surface thermal barrier layer
during burning which helped to protect the underlying bulk from exposure to the external
heat source.

Fraser et al. performed an in situ polymerization of PMMA in the presence of a low 0.1 wt.%
concentration of either raw single-wall CNTs (SWCNTs) or acid-treated SWCNTs [29].
Although these transparent nanocomposites had slightly lower temperatures at which 10%
weight loss had occurred in TGA when heated at 10°C min−1 in comparison with commercial
PMMA, the temperature corresponding to the maximum rate of degradation increased by 8°C
for the composites with the raw SWCNTs and by 18°C for the composites with acid-treated
SWCNTs. Interestingly, these authors also showed using Raman spectroscopy that acid
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treating of the SWCNTs enabled them to bind covalently with the PMMA, rather than merely
be in contact with it, as was the case with the raw SWCNTs.

The thermal analysis results obtained by Xiong et al. for polyurethane (PU) covalently linked
with 2 wt.% of amino-functionalized MWCNTs indicate that the temperature at which the
maximum rate of degradation occurs increased from 408°C for PU to 419°C for the composite
in TGA experiments with heating rates of 20°C min−1, once again indicating an improvement
of thermal stability of a polymer matrix with the addition of CNTs [30]. Another TGA study,
this time with a heating rate of 10°C min−1 on PU nanocomposite coatings modified with 5 wt.
% MWCNTs, showed that the temperature at which there was complete decomposition of the
matrix PU increased by 21°C with the introduction of the MWCNTs [31]. This was explained
by the authors in terms of the relatively inert MWCNTs retarding the free movement of the
PU chains.

Overall, it can be concluded that the improvement of the thermal stability of CNT-modified
polymers and hybrid nanocomposites, reported by a number of laboratories, can be attributed
to a variety of factors, all of which are related to the intrinsic thermal stability of CNTs, the
effects of radical scavenging and by forming a physical barrier making it difficult for volatile
products in the matrix to escape from the bulk.

3.2.4. Mechanical properties

Nanoindentation curves provide continuous values of Young’s modulus and hardness during
loading as a function of displacement (e.g., Figure 12). The average Young’s modulus and
hardness values and the corresponding standard deviations and coefficients of variation for
the five nanocomposites, determined from displacements between 60 and 120 nm, are
summarized in Table 3.

Figure 12. Representative loading and unloading nanoindentation curves for sample BPO0.01 from which hardness
and Young´s modulus values were obtained.
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Nanoindentation results show a coating hardness between 0.38 ± 0.4 GPa and 0.49 ± 0.6 GPa
for all samples, values about twice as high as those for PMMA (0.22–0.26 GPa), but, not
surprisingly, significantly lower than amorphous SiO2 (7–9 GPa) [32]. Young’s modulus values
were in the range between 6.6 ± 0.3 GPa and 7.7 ± 0.1 GPa, about three times higher than pure
PMMA (2.24–3.24 GPa), but about one order of magnitude lower than the elastic modulus of
silicon oxide (73 GPa). These values represent a significant improvement of hardness and
stiffness compared to pure acrylic, despite the presence of more than 70% polymethacrylate
groups in the hybrid [33]. The inclusion of CNTs only produced a significant increase in
hardness for the BPO0.05_CNT_SDS coating, with an increase of some 20% in comparison with
the hardness of the BPO0.05 reference sample.

Sample Young’s modulus (GPa) Hardness (GPa)

Mean Std. dev. % COV Mean Std. dev. % COV

BPO0.01 7.849 0.398 5.07 0.400 0.042 10.41

BPO0.01_CNT_SDS 6.597 0.346 5.25 0.379 0.036 9.58

BPO0.05 7.749 0.137 1.77 0.413 0.012 2.83

BPO0.05_CNT_SDS 7.718 0.454 5.88 0.491 0.059 12.07

BPO0.05_CNTCOOH 7.501 0.154 2.06 0.431 0.014 3.23

Table 3. Young’s modulus and hardness values, determined from indentations between 60 and 120 nm deep.

Figure 13. Microscratch curves (a) for BPO0.01 matrix coatings and (b) for BPO0.05 matrix coatings.

Scratch testing is a widely used, fast and effective method to provide information on the lev‐
el of adhesion, resistance to scratching, the mechanism of fracture, the coefficient of friction
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and the wear characteristics of coatings. In a typical experiment, a coating is scratched with
increasing normal force using a diamond stylus. The track is then analyzed by optical or
electron microscopy to determine the mechanism of mechanical failure, such as coating de‐
tachment (loss of adhesion to the substrate), cracking and plastic deformation. The scratch
test provides the coefficient of friction, defined as the ratio of the applied load and the nor‐
mal load, directly.

Curves of the coefficient of friction as a function of scratch distance (microscratch curves) for
all hybrid coatings are shown in Figure 13. The increase of the friction coefficient is associated
with an increase in scratch resistance (friction force), while the critical load for delamination
is related to the difficulty in breaking the adhesive interaction between the coating and the
metal substrates. The scratch tracks, shown in Figure 14, were analyzed by optical microscopy
to determine the failure mechanism and the critical load for film cracking and delamination.

Figure 14. Optical microscopy of the five hybrid coatings deposited on A1020 carbon steel after scratch testing.

As is evident from Figure 14, the PMMA–silica reference samples (BPO0.01 and BPO0.05) were
the softest coatings, showing four deformation stages with increasing force: (1) elastic
deformation, (2) plastic deformation, (3) cracks and (4) delamination. The critical loads for
delamination were 78 mN for BPO0.01 and 84 mN for BPO0.05, marked by the start of strong
noise on the microscratch curves shown in Figure 13. The hybrids containing CNTs showed a
higher scratch resistance and better adhesion to the A1020 steel substrate. Most interestingly,
the BPO0.01_CNT_SDS coating showed an extreme reinforcement effect, with a higher
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coefficient of friction than carbon steel (0.5) [34] and no delamination up to a load of 240 mN
(Figure 15a), the maximum load capacity of the equipment. BPO0.05_CNT_SDS and
BPO0.05_CNTCOOH had critical loads for delamination of 133 mN (Figure 15b) and 122 mN
(Figure 15c), respectively, both are higher than those obtained for the BPO0.05 matrix. These
results confirm that the intrinsic mechanical properties of CNTs, i.e., the high elastic modulus
(~1.4 TPa) and the high strength (50–500 GPa), contribute to a significant reinforcement of the
hybrid [35]. The strong adhesion of the hybrid film to the carbon steel is a consequence of the
covalent interaction between the hydroxyl groups of the substrate and the silanol groups of
the inorganic part of the hybrid. The increased mechanical strength of the hybrids, induced by
the incorporation of CNTs, increases the critical force for delamination, thus extending the
functionality of protective PMMA–silica coatings to conditions where abrasive forces act in an
aggressive environment, such as in reactors for the acidic processing of sugar cane, for
example.

Figure 15. Optical microscopy of (a) the BPO0.01_CNT_SDS coating after scratch testing to a load of 240 mN, (b) the
BPO0.05_CNT_SDS coating after scratch testing to a load of 133 mN and (c) the BPO0.05_CNTCOOH coating after
scratch testing to a load of 122 mN.

Other studies have also examined the effect of CNT incorporation on the mechanical properties
of organic and hybrid coatings. At the low SWCNT loading studied by Fraser et al. in their
PMMA–SWCNT composites, no clear benefit was seen in the tensile properties, although there
was some evidence to suggest that composites with acid-treated SWCNTs had improved
impact strength in comparison with pure PMMA [29].

In their recent study on epoxy–CNT composite coatings deposited on 2024-T3 aluminum alloy
substrates, Khun et al. were able to conclude that 0.5 wt.% CNT loading clearly produced
composites with improved adhesion to the substrates and improved wear resistance relative
to the unloaded epoxy coatings [12]. This improvement was explained in terms of a relaxation
of the residual stress within the epoxy coating caused by the incorporation of the CNTs.

Kumar and Gasem have been able to demonstrate the beneficial effects of incorporating 2 wt.
% of functionalized MWCNTs into polyaniline (PANI) coatings deposited on mild steel by dip
coating [36]. The PANI–MWCNT coatings showed a Vickers micro hardness of 385 HV,
compared with 266 HV for pure PANI coatings. Furthermore, PANI–MWCNT coatings
showed significantly improved resistance to scratching in comparison with pure PANI
coatings.

Protective Coatings Based on PMMA–Silica Nanocomposites Reinforced with Carbon Nanotubes
http://dx.doi.org/10.5772/62808

215



Despite the results obtained by Fraser et al. [29], the clear trend in the results of the work
reported here and elsewhere is that controlled incorporation of CNTs into hybrid and polymer
matrices at suitable levels is likely to be beneficial to the matrices in terms of improved
mechanical performance. Thus, it is reasonable to expect significant improvements in terms of
scratch and wear resistance, adhesion strength and also hardness and Young´s modulus of the
matrices when incorporating CNTs. For the most part, this can be attributed to the excellent
mechanical properties of the CNTs. However, more work is clearly required to understand
fully the mechanism responsible for the beneficial effect of incorporating CNTs on the adhesion
of these matrices to metallic substrates.

3.2.5. Anticorrosive properties

The corrosion protection efficiency of the pure and the modified hybrid coatings was deter‐
mined by EIS, performed in an electrochemical cell containing aqueous 3.5% NaCl solution at
25°C. The principle of EIS is to impose a small sinusoidal potential with varying frequency
and, by measuring the alternating current response, to obtain the impedance of the electro‐
chemical system. The impedance Z(ω) is composed of a real and an imaginary part, involving
the ohmic and capacitive contributions, and can be represented as a vector of length |Z|, where
|Z| = (Zreal

2 + Zimag
2)1/2. The angle between the Z vector and the Zreal axis is the phase angle ϕ [37].

For each measurement, three graphs were obtained: a Nyquist plot (Zreal vs. Zimag) and two
Bode graphs of the impedance modulus and phase angle as a function of frequency.

EIS measurements were performed for all hybrid-coated samples after one day of immersion
and then at 1 week intervals until a significant drop of the impedance modulus occurred due
to pitting. The time interval until the onset of pitting defined the lifetime of the coating. The
Nyquist and Bode plots are shown in Figure 16, while the equivalent electrical circuits of the
electrolyte–coating–substrate system used to fit the EIS data are shown in Figure 17. For
comparison, EIS characteristics of bare A1020 carbon steel substrate were also recorded, as
shown in Figure 16. The impedance modulus at low frequency and the phase angle behavior
is an indicator of the anticorrosion performance. Coatings with modulus higher than 108 Ω
cm2 typically provide excellent protection, while those below 106 Ω cm2 have poor protection
efficiency [38].

The BPO0.01 matrix had an initial impedance modulus of 108 Ω cm2 which remained un‐
changed during 56 days it survived testing, while the BPO0.05 matrix had a one order of
magnitude higher impedance modulus of 109 Ω cm2, remaining stable for its lifetime of 21
days. This finding might be related to the higher overall connectivity of the BPO0.05 hybrid,
which, on the basis of the results of NMR, TG/DTG and mechanical testing, had highly
polymerized organic moieties densely interconnected with reticulated silica nodes. This
excellent performance of the PMMA–silica hybrid coating can be compared with the perform‐
ance of the bare carbon steel. The coated samples showed up to 5 orders of magnitude higher
corrosion resistance, a consequence of the dense structure acting as an efficient diffusion
barrier against aggressive agents. In this context, it should be noted that the anticorrosive
performance reported for most hybrid coatings, in terms of initial impedance modules, is
usually of the order of 107 Ω cm2 [5, 39, 40].
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The addition of CNTs dispersed in SDS in the BPO0.01 matrix did not change neither the
impedance modulus (108 Ω cm2) significantly, nor the lifetime of the coating (43 days). The
addition of functionalized and dispersed CNTs to the BPO0.05 matrix increased the impedance
modulus, but decreased the lifetime of the coating to 7 days for BPO0.05_CNT_SDS and 10
days for BPO0.05_CNTCOOH. As has been suggested in recent studies [12, 13], CNTs act in
the PMMA–silica nanocomposite as structural reinforcements and densifier agents, providing
improved thermal and mechanical properties without degrading the chemical barrier charac‐
teristics. The extraordinary electrochemical performance of these micron thick films, ap‐
proaching that of thick paints, is related to their dense hybrid structure, thus providing an
efficient passivation of metallic surfaces [4]. Although the CNT-containing coatings were
thicker than pure hybrid films, they actually showed shorter lifetimes in the NaCl solution.
This can be explained in terms of electrolyte uptake via diffusion paths along the outer
nanotube walls and also through the cavities of the nanotubes. Therefore, the degradation of
the coatings after long-term exposure is associated with the penetration of the electrolyte,
involving Cl− ions, oxygen and water and subsequent chemical reaction (corrosion) at the
coating/metal interface [38], causing a sudden drop of the electrochemical performance.

Figure 16. Nyquist and Bode plots for uncoated carbon steel (a) BPO0.01 matrix and (b) BPO0.05 matrix after 1 day of
immersion in 3.5% NaCl standard saline solution.
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Figure 17. The electrical equivalent circuit used to fit all the EIS experimental data.

To obtain a quantitative model of the electrochemical system, the equivalent circuit of Figure
17 was used to fit the impedance data of Figure 16. The circuit consists of two time constants,
Rc/Cc at high frequency (~104 Hz) and Rct/Cdl at low frequency (~1 Hz), where Rc is the coating
resistance, Cc is the coating capacitance, Rct is the charge transfer resistance and Cdl is the
capacitance of the electric double layer of the coating/carbon steel interface [38]. As frequently
applied for electrochemical systems, the capacitors were replaced by a constant phase element
(CPE) to take into account the nonideality of the capacitor representing the coating, expressed
by the nc and ndl exponents. All circuit parameters obtained by fitting the EIS data are shown
in Table 4. All chi-square (χ2) values were smaller than 10−3, ensuring a high fit quality.
Coatings showing a combination of high corrosion resistance and low phase angle values close
to −90°, indicative of ideal capacitive behavior, are very efficient in blocking the electrolyte
uptake. All hybrid films showed elevated volume and interface resistances and high-frequency
phase angle values below −80° over four decades, all of which are characteristics expected for
efficient protective coatings.

BPO0.01 BPO0.01_CNT_SDS BPO00.5 BPO005_CNT_SDS BPO005_CNTCOOH

χ2 1.4 × 10−3 3.0 × 10−4 3.0 × 10−4 2.3 × 10−4 4.4 × 10−4

RC (Ω cm2) 2.8 × 107 (3.80) 1.3 × 107 (8.77) 1.5 × 107 (5.52) 1.0 × 107 (10.7) 1.5 × 107 (5.52)

CPEC (Ω−1cm−2sn) 3.8 × 10−9 (1.00) 1.5 × 10−9 (0.96) 2.7 × 10−9 (0.77) 9.5 × 10−10 (1.25) 2.7 × 10−9 (0.77)

nC 0.95 (0.13) 0.96 (0.10) 0.95 (0.09) 0.96 (0.13) 0.95 (0.09)

Rct (Ω cm2) 1.9 × 108 (1.32) 1.6 × 108 (1.09) 3.8 × 109 (1.23) 2.6 × 1010 (1.74) 3.8 × 109 (1.23)

CPEdl (Ω−1cm−2sn) 7.3 × 10−9 (1.52) 1.7 × 10−9 (1.29) 2.2 × 10−9 (0.91) 6.6 × 10−10 (1.76) 2.2 × 10−9 (0.91)

ndl 0.74 (1.27) 0.65 (0.93) 0.70 (0.33) 0.70 (0.43) 0.70 (0.33)

*Values in brackets represent the errors in percentage.

Table 4. Equivalent circuit parameters for all samples after 1 day in 3.5% NaCl solution.
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There are a number of related studies which have examined the electrochemical performance
of CNT–hybrid and CNT–polymer nanocomposite coatings in contact with saline environ‐
ments. Liu et al. modified bis-[triethoxysilylpropyl] tetrasulfide (BTESPT) silane films by
MWCNTs functionalized with carboxylic groups [41]. EIS results, obtained for coated 304
stainless steel samples in 3.5 % NaCl solution, showed that the addition of different amounts
of CNTs (0.5, 2.5 and 5 mg) improved the corrosion resistance relative to the pure BTESPT
coatings. The impedance modulus of the BTESPT/MWCNT hybrid film reached about 107 Ω
cm2, a value about three orders of magnitude higher than the bare substrate and one order of
magnitude higher than the pure BTESPT film. The authors suggested that carboxylated
MWCNTs react with silanol groups from the silane precursor to form covalent bonds between
BTESPT and the MWCNTs which strengthen the adhesion strength of the film, increasing its
density and thus inhibiting the penetration of the corrosive ions. In addition, it was suggested
by these authors that the long chain structure of the CNTs may be able to fill pits and cracks
in the film, thus helping to reduce the number of corrosion-induced defects.

Jeon et al. reported EIS results combined with hygrothermal cyclic testing of their CNT-loaded
epoxy coatings deposited on carbon steel [42]. In the hygrothermal testing, the temperature
was ramped up from 25°C to 85°C and back to 25°C over a period of 12 hours while the coating
was in contact with the electrolyte. This procedure was designed to accelerate the cumulative
effect of the electrolyte on the coating/substrate interface. They found that after 30 hygrother‐
mal test cycles the impedance modulus for pure epoxy coatings at 0.01 Hz decreased from
1010 Ω cm2 to 106 Ω cm2. For the two loadings of 0.25 and 0.5 wt.% that they examined for the
CNT-containing samples, there was a lower initial resistance at 0.01 Hz because of the
conductive nature of the CNTs, but after 30 cycles the impedance modulus at this frequency
was higher than for the pure epoxy coatings. These results were explained by the authors in
terms of the decrease in the water uptake of the CNT-loaded coatings, rather than any decrease
in chemical attack by the 0.5 wt% NaCl solution, and the increase in adhesion strength of the
coatings with the addition of the CNTs.

The anticorrosive performance of epoxy–CNT composite coatings was also reported for
aluminum alloy 2024-T3 substrates, tested by EIS in a 0.5 M NaCl solution by Kuhn et al. [12].
Epoxy coatings and epoxy coatings containing 0.1 wt.% of MWCNTs had a impedance
modulus of 3 × 104 Ω cm2, slightly higher than bare Al, which had an impedance modulus of
104 Ω cm2. On comparison, epoxy coatings containing 0.5 wt.% of MWCNTs had a higher
impedance modulus of 6 × 104 Ω cm2, explained by the authors in terms of the 3D dispersion
of the MWCNTs in the epoxy matrix at this level contributing to a reduction in the porosity of
the coating, and thus reducing its electrolyte uptake.

Deyab [43] studied the effect on the corrosion protection efficiency of coated carbon steel of
different CNT concentrations from 0.2 to 0.5 wt.% in alkyd resin films used as the protective
coatings. He found that all CNT-loaded films had an improved corrosion resistance in 3.5 wt.
% NaCl saline solution relative to the pure alkyd resin films. These findings were attributed
to the ability of the functionalized CNTs to absorb resin on their surfaces, thereby enhancing
the density of the coatings, eliminating microflaws in the coating and making it more difficult
for corrosive species to be transported through the coating to the underlying steel.
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Finally, the corrosion protection performance of the PANI–MWCNT coatings studied by
Kumar and Gasem demonstrated improved corrosion performance of the coating containing
MWCNT in comparison with the pure PANI coatings [36]. This observation was also explained
by the authors in terms of a reduced level of porosity in the PANI coating as a consequence of
bonding between the PANI matrix and the functionalized CNTs, leading in turn to reduced
permeability of coating to corrosive agents.

In comparison with protective coatings based on organic–CNT composites reported to date in
the literature, the PMMA–silica–CNT films on carbon steel, discussed in the work, are by far
the most effective corrosion protection barrier, with a much higher impedance modulus and
lifetime in 3.5% NaCl solution.

Overall, the results obtained in this study have shown that a homogeneous dispersion of single-
wall CNTs in PMMA–silica nanocomposites represents a novel and very promising coating
system that is able to combine high anticorrosive performance with elevated thermal and
mechanical stability, extending the application of these coatings to abrasive environments.

4. Conclusions

Single-wall CNTs have been dispersed through surfactant assistance and by functionalization
with carboxylic groups. Both dispersion procedures have proved to be very effective in the
modification of PMMA–silica hybrids, producing homogeneous and defect-free nanocompo‐
site coatings with very smooth surfaces (RRMS <0.5 nm) and thicknesses of 2–7 μm. 29Si-NMR
results showed that the addition of 500 ppm of CNTs into PMMA–silica hybrid matrices did
not affect the high connectivity of the inorganic phase (~80%), while XPS results confirmed the
nominal composition and the proportion of bonding environments forming the hybrid
network. CNTs were effective in improving the thermal stability of the hybrids, increasing
their onset temperature of degradation and shifting all depolymerization events to higher
temperatures. Mechanical reinforcement of the hybrid coatings was achieved for both CNT
dispersion methods, resulting in a significantly higher scratch resistance and improved
adhesion of the coating to A1020 carbon steel substrate relative to the hybrid coatings without
the CNTs. EIS results showed that the electrochemical performance of the CNT-loaded
coatings is superior to most organic–CNT coating systems reported to date in the literature,
being able to act for several weeks as efficient corrosion barriers in aggressive saline environ‐
ments, maintaining an impedance modulus of up to 109 Ω cm2. These results suggest that CNT-
reinforced PMMA–silica nanocomposites have a great potential to extend the applicability of
these environmentally compliant, high efficiency anticorrosive coatings to abrasive environ‐
ments.
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