38 research outputs found

    A deep dive into the ecology of Gamay (Botany Bay, Australia): current knowledge and future priorities for this highly modified coastal waterway

    Get PDF
    Context: Gamay is a coastal waterway of immense social, cultural and ecological value. Since European settlement, it has become a hub for industrialisation and human modification. There is growing desire for ecosystem-level management of urban waterways, but such efforts are often challenged by a lack of integrated knowledge. Aim and methods: We systematically reviewed published literature and traditional ecological knowledge (TEK), and consulted scientists to produce a review of Gamay that synthesises published knowledge of Gamay’s aquatic ecosystem to identify knowledge gaps and future research opportunities. Key results: We found 577 published resources on Gamay, of which over 70% focused on ecology. Intertidal rocky shores were the most studied habitat, focusing on invertebrate communities. Few studies considered multiple habitats or taxa. Studies investigating cumulative human impacts, long-term trends and habitat connectivity are lacking, and the broader ecological role of artificial substrate as habitat in Gamay is poorly understood. TEK of Gamay remains a significant knowledge gap. Habitat restoration has shown promising results and could provide opportunities to improve affected habitats in the future. Conclusion and implications: This review highlights the extensive amount of knowledge that exists for Gamay, but also identifies key gaps that need to be filled for effective management

    Overview of the JET results in support to ITER

    Get PDF

    Passive flow through an unstalked intertidal ascidian: Orientation and morphology enhance suspension feeding in Pyura stolonifera

    Full text link
    Passive flow is believed to increase the gains and reduce the costs of active suspension feeding. We used a mixture of field and laboratory experiments to evaluate whether the unstalked intertidal ascidian Pyura stolonifera exploits passive flow. We predicted that its orientation to prevailing currents and the arrangement of its siphons would induce passive flow due to dynamic pressure at the inhalant siphon, as well as by the Bernoulli effect or viscous entrainment associated with different fluid velocities at each siphon, or by both mechanisms. The orientation of P. stolonifera at several locations along the Sydney-Illawarra coast (Australia) covering a wide range of wave exposures was nonrandom and revealed that the ascidians were con- sistently oriented with their inhalant siphons directed into the waves or backwash. Flume experiments using wax mod- els demonstrated that the arrangement of the siphons could induce passive flow and that passive flow was greatest when the inhalant siphon was oriented into the flow. Field exper- iments using transplanted animals confirmed that such an orientation resulted in ascidians gaining food at greater rates, as measured by fecal production, than when oriented perpendicular to the wave direction. We conclude that P. stolonifera enhances suspension feeding by inducing pas- sive flow and is, therefore, a facultatively active suspension feeder. Furthermore, we argue that it is likely that many other active suspension feeders utilize passive flow and, therefore, measurements of their clearance rates should be made under appropriate conditions of flow to gain ecolog- ically relevant results.<br /

    Functional traits reveal early responses in marine reserves following protection from fishing

    No full text
    Evaluating the effectiveness of marine reserves in achieving conservation goals is challenged by the decadal scales over which biological systems respond following protection. Given that trophic interactions underpin community responses following protection and that complex ecological interactions make responses difficult to identify, quantifying changes in species traits may provide detail missed by traditional diversity measures, including information relevant to ecosystem functioning. We determine whether this is the case by comparing community metrics based on functional traits to taxonomic diversity measures associated with ‘no take’ marine reserves and partially protected, fished areas along eight degrees of latitude

    Continent-wide declines in shallow reef life over a decade of ocean warming.

    No full text
    Human society is dependent on nature , but whether our ecological foundations are at risk remains unknown in the absence of systematic monitoring of species’ populations . Knowledge of species fuctuations is particularly inadequate in the marine realm . Here we assess the population trends of 1,057 common shallow reef species from multiple phyla at 1,636 sites around Australia over the past decade. Most populations decreased over this period, including many tropical fshes, temperate invertebrates (particularly echinoderms) and southwestern Australian macroalgae, whereas coral populations remained relatively stable. Population declines typically followed heatwave years, when local water temperatures were more than 0.5 °C above temperatures in 2008. Following heatwaves , species abundances generally tended to decline near warm range edges, and increase near cool range edges. More than 30% of shallow invertebrate species in cool latitudes exhibited high extinction risk, with rapidly declining populations trapped by deep ocean barriers, preventing poleward retreat as temperatures rise. Greater conservation effort is needed to safeguard temperate marine ecosystems, which are disproportionately threatened and include species with deep evolutionary roots. Fundamental among such efforts, and broader societal needs to efficiently adapt to interacting anthropogenic and natural pressures, is greatly expanded monitoring of species’ population trends .Graham J. Edgar ... Camille Mellin ... et al
    corecore