441 research outputs found

    Formation of Dendritic Spines with GABAergic Synapses Induced by Whisker Stimulation in Adult Mice

    Get PDF
    AbstractDuring development, alterations in sensory experience modify the structure of cortical neurons, particularly at the level of the dendritic spine. Are similar adaptations involved in plasticity of the adult cortex? Here we show that a 24 hr period of single whisker stimulation in freely moving adult mice increases, by 36%, the total synaptic density in the corresponding cortical barrel. This is due to an increase in both excitatory and inhibitory synapses found on spines. Four days after stimulation, the inhibitory inputs to the spines remain despite total synaptic density returning to pre-stimulation levels. Functional analysis of layer IV cells demonstrated altered response properties, immediately after stimulation, as well as four days later. These results indicate activity-dependent alterations in synaptic circuitry in adulthood, modifying the flow of sensory information into the cerebral cortex

    Pansynaptic Enlargement at Adult Cortical Connections Strengthened by Experience

    Get PDF
    Behavioral experience alters the strength of neuronal connections in adult neocortex. These changes in synaptic strength are thought to be central to experience-dependent plasticity, learning, and memory. However, it is not known how changes in synaptic transmission between neurons become persistent, thereby enabling the storage of previous experience. A long-standing hypothesis is that altered synaptic strength is maintained by structural modifications to synapses. However, the extent of synaptic modifications and the changes in neurotransmission that the modifications support remain unclear. To address these questions, we recorded from pairs of synaptically connected layer 2/3 pyramidal neurons in the barrel cortex and imaged their contacts with high-resolution confocal microscopy after altering sensory experience by whisker trimming. Excitatory connections strengthened by experience exhibited larger axonal varicosities, dendritic spines, and interposed contact zones. Electron microscopy showed that contact zone size was strongly correlated with postsynaptic density area. Therefore, our findings indicate that whole synapses are larger at strengthened connections. Synaptic transmission was both stronger and more reliable following experience-dependent synapse enlargement. Hence, sensory experience modified both presynaptic and postsynaptic function. Our findings suggest that the enlargement of synaptic contacts is an integral part of long-lasting strengthening of cortical connections and, hence, of information storage in the neocorte

    Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation

    Get PDF
    Analysis of brain ultrastructure using electron microscopy typically relies on chemical fixation. However, this is known to cause significant tissue distortion including a reduction in the extracellular space. Cryo fixation is thought to give a truer representation of biological structures, and here we use rapid, high-pressure freezing on adult mouse neocortex to quantify the extent to which these two fixation methods differ in terms of their preservation of the different cellular compartments, and the arrangement of membranes at the synapse and around blood vessels. As well as preserving a physiological extracellular space, cryo fixation reveals larger numbers of docked synaptic vesicles, a smaller glial volume, and a less intimate glial coverage of synapses and blood vessels compared to chemical fixation. The ultrastructure of mouse neocortex therefore differs significantly comparing cryo and chemical fixation conditions

    FOXO3 determines the accumulation of α-synuclein and controls the fate of dopaminergic neurons in the substantia nigra

    Get PDF
    Parkinson's disease (PD) is characterized by the selective degeneration of neuronal populations presumably due to pathogenic interactions between aging and predisposing factors such as increased levels of α-synuclein. Here, we genetically modulate the activity of the transcription factor Forkhead box protein O3 (FOXO3) in adult nigral dopaminergic neurons using viral vectors and explore how this determinant of longevity impacts on neuronal fate in normal and diseased conditions. We find that dopaminergic neurons are particularly vulnerable to changes in FOXO3 activity in the substantia nigra. While constitutive activation has proapoptotic effects leading to neuronal loss, inhibition of FOXO-mediated transcription by a dominant-negative competitor causes oxidative damage and is detrimental at high vector dose. To address the role of FOXO3 in PD, we modulate its activity in dopaminergic neurons overexpressing human α-synuclein. In this pathogenic condition, we find that FOXO inhibition has protective effects, suggesting that this transcription factor ultimately contributes to neuronal cell death. Nevertheless, mild FOXO3 activity also protects nigral neurons against the accumulation of human α-synuclein, albeit to a lesser extent. FOXO3 reduces the amount of α-synuclein present in the soluble protein fraction and promotes the coalescence of dense proteinase K-resistant aggregates, with an accumulation of autophagic vacuoles containing lipofuscin. Consistent with these in vivo observations, we find that FOXO3 controls autophagic flux in neuronal cells. Altogether, these results point to FOXO3 as an important determinant of neuronal survival in the substantia nigra, which may oppose α-synuclein accumulation and proteotoxicit

    Increased axonal bouton dynamics in the aging mouse cortex

    No full text
    Aging is a major risk factor for many neurological diseases and is associated with mild cognitive decline. Previous studies suggest that aging is accompanied by reduced synapse number and synaptic plasticity in specific brain regions. However, most studies, to date, used either postmortem or ex vivo preparations and lacked key in vivo evidence. Thus, whether neuronal arbors and synaptic structures remain dynamic in the intact aged brain and whether specific synaptic deficits arise during aging remains unknown. Here we used in vivo two-photon imaging and a unique analysis method to rigorously measure and track the size and location of axonal boutons in aged mice. Unexpectedly, the aged cortex shows circuit-specific increased rates of axonal bouton formation, elimination, and destabilization. Compared with the young adult brain, large (i.e., strong) boutons show 10-fold higher rates of destabilization and 20-fold higher turnover in the aged cortex. Size fluctuations of persistent boutons, believed to encode long-term memories, also are larger in the aged brain, whereas bouton size and density are not affected. Our data uncover a striking and unexpected increase in axonal bouton dynamics in the aged cortex. The increased turnover and destabilization rates of large boutons indicate that learning and memory deficits in the aged brain arise not through an inability to form new synapses but rather through decreased synaptic tenacity. Overall our study suggests that increased synaptic structural dynamics in specific cortical circuits may be a mechanism for age-related cognitive decline

    Cell Division by Longitudinal Scission in the Insect Endosymbiont

    Get PDF
    Spiroplasma bacteria are highly motile bacteria with no cell wall and a helical morphology. This clade includes many vertically transmitted insect endosymbionts, including Spiroplasma poulsonii, a natural endosymbiont of Drosophila melanogaster. S. poulsonii bacteria are mainly found in the hemolymph of infected female flies and exhibit efficient vertical transmission from mother to offspring. As is the case for many facultative endosymbionts, S. poulsonii can manipulate the reproduction of its host; in particular, S. poulsonii induces male killing in Drosophila melanogaster. Here, we analyze the morphology of S. poulsonii obtained from the hemolymph of infected Drosophila. This endosymbiont was not only found as long helical filaments, as previously described, but was also found in a Y-shaped form. The use of electron microscopy, immunogold staining of the FtsZ protein, and antibiotic treatment unambiguously linked the Y shape of S. poulsonii to cell division. Observation of the Y shape in another Spiroplasma, S. citri, and anecdotic observations from the literature suggest that cell division by longitudinal scission might be prevalent in the Spiroplasma clade. Our study is the first to report the Y-shape mode of cell division in an endosymbiotic bacterium and adds Spiroplasma to the so far limited group of bacteria known to utilize this cell division mod

    FOXO3 determines the accumulation of alpha-synuclein and controls the fate of dopaminergic neurons in the substantia nigra

    Get PDF
    Parkinson's disease (PD) is characterized by the selective degeneration of neuronal populations presumably due to pathogenic interactions between aging and predisposing factors such as increased levels of a-synuclein. Here, we genetically modulate the activity of the transcription factor Forkhead box protein O-3 (FOXO3) in adult nigral dopaminergic neurons using viral vectors and explore how this determinant of longevity impacts on neuronal fate in normal and diseased conditions. We find that dopaminergic neurons are particularly vulnerable to changes in FOXO3 activity in the substantia nigra. While constitutive activation has proapoptotic effects leading to neuronal loss, inhibition of FOXO-mediated transcription by a dominant-negative competitor causes oxidative damage and is detrimental at high vector dose. To address the role of FOXO3 in PD, we modulate its activity in dopaminergic neurons overexpressing human a-synuclein. In this pathogenic condition, we find that FOXO inhibition has protective effects, suggesting that this transcription factor ultimately contributes to neuronal cell death. Nevertheless, mild FOXO3 activity also protects nigral neurons against the accumulation of human a-synuclein, albeit to a lesser extent. FOXO3 reduces the amount of a-synuclein present in the soluble protein fraction and promotes the coalescence of dense proteinase K-resistant aggregates, with an accumulation of autophagic vacuoles containing lipofuscin. Consistent with these in vivo observations, we find that FOXO3 controls autophagic flux in neuronal cells. Altogether, these results point to FOXO3 as an important determinant of neuronal survival in the substantia nigra, which may oppose a-synuclein accumulation and proteotoxicity

    Abnormal MEG Oscillatory Activity during Visual Processing in the Prefrontal Cortices and Frontal Eye-Fields of the Aging HIV Brain

    Get PDF
    ObjectiveShortly after infection, HIV enters the brain and causes widespread inflammation and neuronal damage, which ultimately leads to neuropsychological impairments. Despite a large body of neuroscience and imaging studies, the pathophysiology of these HIV-associated neurocognitive disorders (HAND) remains unresolved. Previous neuroimaging studies have shown greater activation in HIV-infected patients during strenuous tasks in frontal and parietal cortices, and less activation in the primary sensory cortices during rest and sensory stimulation.MethodsHigh-density magnetoencephalography (MEG) was utilized to evaluate the basic neurophysiology underlying attentive, visual processing in older HIV-infected adults and a matched non-infected control group. Unlike other neuroimaging methods, MEG is a direct measure of neural activity that is not tied to brain metabolism or hemodynamic responses. During MEG, participants fixated on a centrally-presented crosshair while intermittent visual stimulation appeared in their top-right visual-field quadrant. All MEG data was imaged in the time-frequency domain using beamforming.ResultsUninfected controls had increased neuronal synchronization in the 6–12 Hz range within the right dorsolateral prefrontal cortex, right frontal eye-fields, and the posterior cingulate. Conversely, HIV-infected patients exhibited decreased synchrony in these same neural regions, and the magnitude of these decreases was correlated with neuropsychological performance in several cortical association regions.ConclusionsMEG-based imaging holds potential as a noninvasive biomarker for HIV-related neuronal dysfunction, and may help identify patients who have or may develop HAND. Reduced synchronization of neural populations in the association cortices was strongly linked to cognitive dysfunction, and likely reflects the impact of HIV on neuronal and neuropsychological health
    corecore