2,542 research outputs found
Self-Consistent Theory of the Gain Linewidth for Quantum Cascade Lasers
The linewidth in intersubband transitions can be significantly reduced below
the sum of the lifetime broadening for the involved states, if the scattering
environment is similar for both states. This is studied within a nonequilibrium
Green function approach here. We find that the effect is of particular
relevance for a recent, relatively low doped, THz quantum cascade laser.Comment: 3 pages, figures include
Contribution of the adrenal gland to the production of androstenedione and testosterone during the first two years of life
Androstenedione and testosterone were measured in whole adrenal glands of 56 previously healthy boys who died suddenly between birth and 2 yr of age. In each adrenal gland, the concentration of androstenedione considerably exceeded that of testosterone. The highest concentrations were found during the first week of life (median, 295 ng/g; range, 98- 320 ng/g). Thereafter, values decreased rapidly until the end of the first year of life (median, 10 ng/g; range, 4.4-22.7 ng/g). Adrenal testosterone concentrations averaged 15% of those of androstenedione in the same gland and similarly decreased until the end of the first year. The decrease of adrenal androgen concentrations paralleled the involution of the fetal adrenal zone. A close correlation existed between the concentration of androstenedione in adrenal tissue and plasma. However, no correlation existed between adrenal and plasma testosterone. When the adrenals and testes of the same infant were compared, there was 10 times more androstenedione in the adrenals than in the testes during the first 2 yr of life. The testes contained more testosterone than the adrenals only during the first 4 months. Thus, in infant boys the adrenals are the main source of androstenedione during the first 2 yr. After the sixth month of life, they also are the main source of testosterone
Testosterone and androstenedione concentrations in human testis and epididymis during the first two years of life
Testosterone and androstenedione were measured in testicular and epididymal tissue of 37 previously healthy infants between 1 and 24 months of age who died suddenly. In half of the patients elevated plasma levels of cortisol and androstenedione suggested preterminal stress. Plasma testosterone levels, however, did not differ from those in healthy infants. Testicular testosterone concentrations were maximal in boys from 1-3 months of age (median, 36.6 ng/g; range, 7-380 ng/g) with peak values similar to those found in pubertal or even adult testes. Thereafter testicular testosterone concentrations decreased and after the age of 6 months all values were below 12.5 ng/g, which corresponds to the low normal range of older prepubertal boys. Plasma testosterone and testicular testosterone correlated significantly (P less than 0.001). On average the testicular concentrations were 36.4 times higher than the corresponding plasma concentrations. Testicular androstenedione was low but correlated significantly with testicular testosterone (P less than 0.001). Epididymal testosterone concentrations were surprisingly high (1-3 months: median, 10.3 ng/g; range, 4-42.7 ng/g) and averaged 30% of the testicular testosterone concentration. Thus, epididymal testosterone concentrations were significantly higher than the circulating plasma testosterone levels, indicating the capacity of the infant epididymis to accumulate androgens. These findings suggest that high local testosterone concentrations during early infancy are important not only for the testis itself but particularly for the developing epididymi
Estrone and estradiol concentrations in human ovaries, testes, and adrenals during the first two years of life
To determine the origin of estrogens in infant blood, we measured estrone (E1) and estradiol (E2) in the gonads of 50 girls and 64 boys who died suddenly between birth and 2 yr of age as well as in the adrenals of 18 of these infant girls and 16 of the boys. In the adrenals, E1 [median, 2.8 ng/g (10.4 pmol/g); range, 1.1-4.8 ng/g (4.1- 17.8 pmol/g)] and E2 [median, 3.0 ng/g (10.9 pmol/g); range, 1.2-5.3 ng/g (4.4-19.5 pmol/g)] were found in similar concentrations and were independent of age and sex. In the gonads, E2 was the major estrogen, but the concentrations differed markedly between the sexes; E2 exceeded E1 almost 10-fold in the ovaries and 2-fold in the testes. On the average, the gonads of the infant girls had 5 times more E2 and 2 times more E1 than those of the boys. As in plasma, E2 concentrations were highest in the ovaries of 1- to 6-month-old girls [median, 10.5 ng/g (38.5 pmol/g); range, 1.1-55.1 ng/g (4.0-202.0 pmol/g)] and in testes of 1- to 3-month-old boys [median, 1.8 ng/g (6.6 pmol/g); range, 0.6- 6.4 ng/g (2.3-23.5 pmol/g)]. Ovarian E2 concentrations declined to less than 3.0 ng/g (11.0 pmol/g) by the end of the first year of life, and testicular E2 declined to less than 1.0 ng/g (3.7 pmol/g) after only 6 months of age. Gonadal estrogen concentrations paralleled changes in gonadal morphology. Ovarian weights varied in a pattern of rise and fall similar to that of ovarian E2 concentrations; the biggest ovaries contained multiple macroscopic cysts. Testicular E2 closely correlated with Leydig cell development and testicular testosterone concentrations. We infer, therefore, that the surge of plasma E2 in infant girls originates from ovarian follicles and that of boys from testicular Leydig cells, and that these both occur as a result of the postnatal surge in gonadotropin secretion. The basal plasma E1 and E2 pool, however, is derived from the adrenals and remains at a comparatively constant level in both sexe
Capillary Condensation, Freezing, and Melting in Silica Nanopores: A Sorption Isotherm and Scanning Calorimetry Study on Nitrogen in Mesoporous SBA-15
Condensation, melting and freezing of nitrogen in a powder of mesoporous
silica grains (SBA-15) has been studied by combined volumetric sorption
isotherm and scanning calorimetry measurements. Within the mean field model of
Saam and Cole for vapor condensation in cylindrical pores a liquid nitrogen
sorption isotherm is well described by a bimodal pore radius distribution. It
encompasses a narrow peak centered at 3.3 nm, typical of tubular mesopores, and
a significantly broader peak characteristic of micropores, located at 1 nm. The
material condensed in the micropores as well as the first two adsorbed
monolayers in the mesopores do not exhibit any caloric anomaly. The
solidification and melting transformation affects only the pore condensate
beyond approx. the second monolayer of the mesopores. Here, interfacial melting
leads to a single peak in the specific heat measurements. Homogeneous and
heterogeneous freezing along with a delayering transition for partial fillings
of the mesopores result in a caloric freezing anomaly similarly complex and
dependent on the thermal history as has been observed for argon in SBA-15. The
axial propagation of the crystallization in pore space is more effective in the
case of nitrogen than previously observed for argon, which we attribute to
differences in the crystalline textures of the pore solids.Comment: 10 pages, 7 figure
Route choice in the presence of a toll road: The role of pre-trip information and learning
Choosing a route is a complex task, especially since the roads’ capacities are limited and road users non-cooperatively seek to optimize their own trip. This article present the results of three in-laboratory route choice experiments. In all experiments the participants had to choose repeatedly between a high-capacity toll-road and a toll-free main road. We investigate the role of pre-trip information on the resulting route usage dynamics. Besides the absence of a stable equilibrium point (Wardrop’s User Equilibrium), we found that the participants improve their decisions over the course of time as a result of learning. Additional information appears only useful if only a limited number of participants possess such information. Moreover, we found gender-related differences in the observed road usage patterns: female participants were more likely to choose the toll road than male participants
Real-time observation of interfering crystal electrons in high-harmonic generation
Accelerating and colliding particles has been a key strategy to explore the
texture of matter. Strong lightwaves can control and recollide electronic
wavepackets, generating high-harmonic (HH) radiation which encodes the
structure and dynamics of atoms and molecules and lays the foundations of
attosecond science. The recent discovery of HH generation in bulk solids
combines the idea of ultrafast acceleration with complex condensed matter
systems and sparks hope for compact solid-state attosecond sources and
electronics at optical frequencies. Yet the underlying quantum motion has not
been observable in real time. Here, we study HH generation in a bulk solid
directly in the time-domain, revealing a new quality of strong-field
excitations in the crystal. Unlike established atomic sources, our solid emits
HH radiation as a sequence of subcycle bursts which coincide temporally with
the field crests of one polarity of the driving terahertz waveform. We show
that these features hallmark a novel non-perturbative quantum interference
involving electrons from multiple valence bands. The results identify key
mechanisms for future solid-state attosecond sources and next-generation
lightwave electronics. The new quantum interference justifies the hope for
all-optical bandstructure reconstruction and lays the foundation for possible
quantum logic operations at optical clock rates
- …