366 research outputs found

    Boojums and the Shapes of Domains in Monolayer Films

    Full text link
    Domains in Langmuir monolayers support a texture that is the two-dimensional version of the feature known as a boojum. Such a texture has a quantifiable effect on the shape of the domain with which it is associated. The most noticeable consequence is a cusp-like feature on the domain boundary. We report the results of an experimental and theoretical investigation of the shape of a domain in a Langmuir monolayer. A further aspect of the investigation is the study of the shape of a ``bubble'' of gas-like phase in such a monolayer. This structure supports a texture having the form of an inverse boojum. The distortion of a bubble resulting from this texture is also studied. The correspondence between theory and experiment, while not perfect, indicates that a qualitative understanding of the relationship between textures and domain shapes has been achieved.Comment: replaced with published version, 10 pages, 13 figures include

    A Phase-Field Model of Spiral Dendritic Growth

    Full text link
    Domains of condensed-phase monolayers of chiral molecules exhibit a variety of interesting nonequilibrium structures when formed via pressurization. To model these domain patterns, we add a complex field describing the tilt degree of freedom to an (anisotropic) complex-phase-field solidification model. The resulting formalism allows for the inclusion of (in general, non-reflection symmetric) interactions between the tilt, the solid-liquid interface, and the bond orientation. Simulations demonstrate the ability of the model to exhibit spiral dendritic growth.Comment: text plus Four postscript figure file

    Polar Smectic Films

    Full text link
    We report on a new experimental procedure for forming and studying polar smectic liquid crystal films. A free standing smectic film is put in contact with a liquid drop, so that the film has one liquid crystal/liquid interface and one liquid crystal/air interface. This polar environment results in changes in the textures observed in the film, including a boojum texture and a previously unobserved spiral texture in which the winding direction of the spiral reverses at a finite radius from its center. Some aspects of these textures are explained by the presence of a Ksb term in the bulk elastic free energy density that favors a combination of splay and bend deformations.Comment: 4 pages, REVTeX, 3 figures, submitted to PR

    Towards a Tetravalent Chemistry of Colloids

    Full text link
    We propose coating spherical particles or droplets with anisotropic nano-sized objects to allow micron-scale colloids to link or functionalize with a four-fold valence, similar to the sp3 hybridized chemical bonds associated with, e.g., carbon, silicon and germanium. Candidates for such coatings include triblock copolymers, gemini lipids, metallic or semiconducting nanorods and conventional liquid crystal compounds. We estimate the size of the relevant nematic Frank constants, discuss how to obtain other valences and analyze the thermal distortions of ground state configurations of defects on the sphere.Comment: Replaced to improve figures. 4 figures Nano Letter

    Hexatic Order and Surface Ripples in Spherical Geometries

    Full text link
    In flat geometries, two dimensional hexatic order has only a minor effect on capillary waves on a liquid substrate and on undulation modes in lipid bilayers. However, extended bond orientational order alters the long wavelength spectrum of these ripples in spherical geometries. We calculate this frequency shift and suggest that it might be detectable in lipid bilayer vesicles, at the surface of liquid metals and in multielectron bubbles in liquid helium at low temperatures. Hexatic order also leads to a shift in the threshold for the fission instability induced in the later two systems by an excess of electric charge.Comment: 5 pages, 1 figure; revised version; to appear in Phys. Rev. Let

    Reversible Random Sequential Adsorption of Dimers on a Triangular Lattice

    Full text link
    We report on simulations of reversible random sequential adsorption of dimers on three different lattices: a one-dimensional lattice, a two-dimensional triangular lattice, and a two-dimensional triangular lattice with the nearest neighbors excluded. In addition to the adsorption of particles at a rate K+, we allow particles to leave the surface at a rate K-. The results from the one-dimensional lattice model agree with previous results for the continuous parking lot model. In particular, the long-time behavior is dominated by collective events involving two particles. We were able to directly confirm the importance of two-particle events in the simple two-dimensional triangular lattice. For the two-dimensional triangular lattice with the nearest neighbors excluded, the observed dynamics are consistent with this picture. The two-dimensional simulations were motivated by measurements of Ca++ binding to Langmuir monolayers. The two cases were chosen to model the effects of changing pH in the experimental system.Comment: 9 pages, 10 figure

    Novel Phases and Reentrant Melting of Two Dimensional Colloidal Crystals

    Full text link
    We investigate two-dimensional (2d) melting in the presence of a one-dimensional (1d) periodic potential as, for example, realized in recent experiments on 2d colloids subjected to two interfering laser beams. The topology of the phase diagram is found to depend primarily on two factors: the relative orientation of the 2d crystal and the periodic potential troughs, which select a set of Bragg planes running parallel to the troughs, and the commensurability ratio p= a'/d of the spacing a' between these Bragg planes to the period d of the periodic potential. The complexity of the phase diagram increases with the magnitude of the commensurabilty ratio p. Rich phase diagram, with ``modulated liquid'', ``floating'' and ``locked floating'' solid and smectic phases are found. Phase transitions between these phases fall into two broad universality classes, roughening and melting, driven by the proliferation of discommensuration walls and dislocations, respectively. We discuss correlation functions and the static structure factor in these phases and make detailed predictions of the universal features close to the phase boundaries. We predict that for charged systems with highly screened short-range interactions these melting transitions are generically reentrant as a function of the strength of the periodic potential, prediction that is in accord with recent 2d colloid experiments. Implications of our results for future experiments are also discussed.Comment: 37 pages, 24 figure

    Interface dynamics for layered structures

    Full text link
    We investigate dynamics of large scale and slow deformations of layered structures. Starting from the respective model equations for a non-conserved system, a conserved system and a binary fluid, we derive the interface equations which are a coupled set of equations for deformations of the boundaries of each domain. A further reduction of the degrees of freedom is possible for a non-conserved system such that internal motion of each domain is adiabatically eliminated. The resulting equation of motion contains only the displacement of the center of gravity of domains, which is equivalent to the phase variable of a periodic structure. Thus our formulation automatically includes the phase dynamics of layered structures. In a conserved system and a binary fluid, however, the internal motion of domains turns out to be a slow variable in the long wavelength limit because of concentration conservation. Therefore a reduced description only involving the phase variable is not generally justified.Comment: 16 pages; Latex; revtex aps; one figure. Revision: screened coulomb interaction with coulomb limi

    EORTC consensus recommendations for the treatment of mycosis fungoides/Sézary syndrome - Update 2023.

    Get PDF
    On behalf of the EORTC Cutaneous Lymphoma Tumours Group (EORTC-CLTG) and following up on earlier versions published in 2006 and 2017 this document provides an updated standard for the treatment of mycosis fungoides and Sézary syndrome (MF/SS). It considers recent relevant publications and treatment options introduced into clinical practice after 2017. Consensus was established among the authors through a series of consecutive consultations in writing and a round of discussion. Treatment options are assigned to each disease stage and, whenever possible and clinically useful, separated into first- and second line options annotated with levels of evidence. Major changes to the previous version include the incorporation of chlormethine, brentuximab vedotin, and mogamulizumab, recommendations on the use of pegylated interferon α (after withdrawal of recombinant unpegylated interferons), and the addition of paragraphs on supportive therapy and on the care of older patients. Still, skin-directed therapies are the most appropriate option for early-stage MF and most patients have a normal life expectancy but may suffer morbidity and impaired quality of life. In advanced disease treatment options have expanded recently. Most patients receive multiple consecutive therapies with treatments often having a relatively short duration of response. For those patients prognosis is still poor and only for a highly selected subset long term remission can be achieved with allogeneic stem cell transplantation. Understanding of the disease, its epidemiology and clinical course, and its most appropriate management are gradually advancing, and there is well-founded hope that this will lead to further improvements in the care of patients with MF/SS

    Stabilization of tilt order by chain flexibility in Langmuir monolayers

    Get PDF
    Langmuir monolayers are modeled as systems of short chains, which are confined to a planar surface at one end, but free to move within the plane. The phase behavior is calculated in a mean field approximation, which combines the self consistent field method with elements of classical density functional theory. It is shown that phases with tilt order are unstable in systems of stiff chains, but can be stabilized by chain conformational entropy in systems of sufficiently flexible chains. The chain entropy is also responsible for the appearance of an additional untilted phase, the liquid expanded phase. The region of stability of the different phases is discussed, and their microscopic structure is analyzed in some detail.Comment: to appear in Phys. Rev.
    corecore