263 research outputs found
Bowl Shaped Cavitands Dimerize and Complex Certain Organic Guests in Organic Solvents which Themselves are Poor Guests
The syntheses and binding properties of rigidly bowl-shaped polycyclic cavitands (1—4) are reported. Attached to the four aryl rim positions of the bowls are four benzenes substituted in their para positions with four CC^Me, Br, OH or NO2 groups, which deepen the bowls. Attached to the base of the bowls are four pentyl feet, which increase the solubilities of these hosts in organic solvents. Of the four hosts, only the one containing the CO2Me groups dimerized both in the crystalline state and in solution in ten deute- rated solvents which themselves are poor guests. In three other deuterated solvents, no dimerization was observed. A crystal structure of the dimer showed that one p-MeC^CCs^ group of each monomer occupied the cavity of its complexing partner in a reciprocating double host-guest arrangement. Such a structure is compatible with the ^H-NMR spectra of the dimer in solution. The dimer was also detected in its FAB-MS. The tetrabromocavitand at low concentrations in CD2CI2 complexed MeCC^C^Me, MeCC^Me, PhCC^Me and MeCOC^CC^Me. Tetranitrocavitand 4 also complexed MeC02CH2Me in CD2CI2 as solvent
Polar Smectic Films
We report on a new experimental procedure for forming and studying polar
smectic liquid crystal films. A free standing smectic film is put in contact
with a liquid drop, so that the film has one liquid crystal/liquid interface
and one liquid crystal/air interface. This polar environment results in changes
in the textures observed in the film, including a boojum texture and a
previously unobserved spiral texture in which the winding direction of the
spiral reverses at a finite radius from its center. Some aspects of these
textures are explained by the presence of a Ksb term in the bulk elastic free
energy density that favors a combination of splay and bend deformations.Comment: 4 pages, REVTeX, 3 figures, submitted to PR
Static Scaling Behavior of High-Molecular-Weight Polymers in Dilute Solution: A Reexamination
Previous theories of dilute polymer solutions have failed to distinguish
clearly between two very different ways of taking the long-chain limit: (I) at fixed temperature , and (II) ,
with fixed. I argue that the modern
two-parameter theory (continuum Edwards model) applies to case II --- not case
I --- and in fact gives exactly the crossover scaling functions for
modulo two nonuniversal scale factors. A Wilson-type renormalization group
clarifies the connection between crossover scaling functions and continuum
field theories. [Also contains a general discussion of the connection between
the Wilson and field-theoretic renormalization groups. Comments solicited.]Comment: 10 pages including 1 figure, 181159 bytes Postscript
(NYU-TH-93/05/01
Boojums and the Shapes of Domains in Monolayer Films
Domains in Langmuir monolayers support a texture that is the two-dimensional
version of the feature known as a boojum. Such a texture has a quantifiable
effect on the shape of the domain with which it is associated. The most
noticeable consequence is a cusp-like feature on the domain boundary. We report
the results of an experimental and theoretical investigation of the shape of a
domain in a Langmuir monolayer. A further aspect of the investigation is the
study of the shape of a ``bubble'' of gas-like phase in such a monolayer. This
structure supports a texture having the form of an inverse boojum. The
distortion of a bubble resulting from this texture is also studied. The
correspondence between theory and experiment, while not perfect, indicates that
a qualitative understanding of the relationship between textures and domain
shapes has been achieved.Comment: replaced with published version, 10 pages, 13 figures include
Theory of monolayers with boundaries: Exact results and Perturbative analysis
Domains and bubbles in tilted phases of Langmuir monolayers contain a class
of textures knows as boojums. The boundaries of such domains and bubbles may
display either cusp-like features or indentations. We derive analytic
expressions for the textures within domains and surrounding bubbles, and for
the shapes of the boundaries of these regions. The derivation is perturbative
in the deviation of the bounding curve from a circle. This method is not
expected to be accurate when the boundary suffers large distortions, but it
does provide important clues with regard to the influence of various energetic
terms on the order-parameter texture and the shape of the domain or bubble
bounding curve. We also look into the effects of thermal fluctuations, which
include a sample-size-dependent effective line tension.Comment: replaced with published version, 21 pages, 16 figures include
Towards a Tetravalent Chemistry of Colloids
We propose coating spherical particles or droplets with anisotropic
nano-sized objects to allow micron-scale colloids to link or functionalize with
a four-fold valence, similar to the sp3 hybridized chemical bonds associated
with, e.g., carbon, silicon and germanium. Candidates for such coatings include
triblock copolymers, gemini lipids, metallic or semiconducting nanorods and
conventional liquid crystal compounds. We estimate the size of the relevant
nematic Frank constants, discuss how to obtain other valences and analyze the
thermal distortions of ground state configurations of defects on the sphere.Comment: Replaced to improve figures. 4 figures Nano Letter
Avoided Critical Behavior in O(n) Systems
Long-range frustrating interactions, even if their strength is infinitesimal,
can give rise to a dramatic proliferations of ground or near-ground states. As
a consequence, the ordering temperature can exhibit a discontinuous drop as a
function of the frustration. A simple model of the doped Mott insulator, where
the short-range tendency of the holes to phase separate competes with
long-range Coulomb effects, exhibits this "avoided critical" behavior. This
model may serve as a paradigm for many other systems.Comment: 4 pages, 2 figure
Hexatic Order and Surface Ripples in Spherical Geometries
In flat geometries, two dimensional hexatic order has only a minor effect on
capillary waves on a liquid substrate and on undulation modes in lipid
bilayers. However, extended bond orientational order alters the long wavelength
spectrum of these ripples in spherical geometries. We calculate this frequency
shift and suggest that it might be detectable in lipid bilayer vesicles, at the
surface of liquid metals and in multielectron bubbles in liquid helium at low
temperatures. Hexatic order also leads to a shift in the threshold for the
fission instability induced in the later two systems by an excess of electric
charge.Comment: 5 pages, 1 figure; revised version; to appear in Phys. Rev. Let
- …