185 research outputs found

    The impact of exercise-induced core body temperature elevations on coagulation responses.

    Get PDF
    OBJECTIVES: Exercise induces changes in haemostatic parameters and core body temperature (CBT). We aimed to assess whether exercise-induced elevations in CBT induce pro-thrombotic changes in a dose-dependent manner. DESIGN: Observational study. METHODS: CBT and haemostatic responses were measured in 62 participants of a 15-km road race at baseline and immediately after finishing. As haemostasis assays are routinely performed at 37°C, we corrected the assay temperature for the individual's actual CBT at baseline and finish in a subgroup of n=25. RESULTS: All subjects (44±11 years, 69% male) completed the race at a speed of 12.1±1.8km/h. CBT increased significantly from 37.6±0.4°C to 39.4±0.8°C (p<0.001). Post-exercise, haemostatic activity was increased, as expressed by accelerated thrombin generation and an attenuated plasmin response. Synchronizing assay temperature to the subjects' actual CBT resulted in additional differences and stronger acceleration of thrombin generation parameters. CONCLUSIONS: This study demonstrates that exercise induces a prothrombotic state, which might be partially dependent on the magnitude of the exercise-induced CBT rise. Synchronizing the assay temperature to approximate the subject's CBT is essential to obtain more accurate insight in the haemostatic balance during thermoregulatory challenging situations. Finally, this study shows that short-lasting exposure to a CBT of 41.2°C does not result in clinical symptoms of severe coagulation. We therefore hypothesize that prolonged exposure to a high CBT or an individual-specific CBT threshold needs to be exceeded before derailment of the haemostatic balance occurs

    Assessing the Potential of Untargeted SWATH Mass Spectrometry-Based Metabolomics to Differentiate Closely Related Exposures in Observational Studies

    Get PDF
    Mass spectrometry (MS) is increasingly used in clinical studies to obtain molecular evidence of chemical exposures, such as tobacco smoke, alcohol, and drugs. This evidence can help verify clinical data retrieved through anamnesis or questionnaires and may provide insights into unreported exposures, for example those classified as the same despite small but possibly relevant chemical differences or due to contaminants in reported exposure compounds. Here, we aimed to explore the potential of untargeted SWATH metabolomics to differentiate such closely related exposures. This data-independent acquisition MS-based profiling technique was applied to urine samples of 316 liver and 570 kidney transplant recipients from the TransplantLines Biobank and Cohort Study (NCT03272841), where we focused on the immunosuppressive drug mycophenolate, which is either supplied as a morpholino-ester prodrug or as an enteric-coated product, the illicit drug cocaine, which is usually supplied as an adulterated product, and the proton pump inhibitors omeprazole and esomeprazole. Based on these examples, we found that untargeted SWATH metabolomics has considerable potential to identify different (unreported) exposure or co-exposure metabolites and may determine variations in their abundances. We also found that these signals alone may sometimes be unable to distinguish closely related exposures, and enhancement of differentiation, for example by integration with pharmacogenomics data, is needed

    Urinary copper excretion is associated with long-term graft failure in kidney transplant recipients

    Get PDF
    Introduction: In chronic kidney disease, proteinuria increases urinary copper excretion, inducing oxidative tubular damage and worsening kidney function. We investigated whether this phenomenon occurred in kidney transplant recipients (KTRs). In addition, we studied the associations of urinary copper excretion with the biomarker of oxidative tubular damage urinary liver-type fatty-acid binding protein (u-LFABP) and death-censored graft failure.Methods: This prospective cohort study was performed in the Netherlands between 2008 and 2017, including outpatient KTR with a functioning graft for longer than 1 year, who were extensively phenotyped at baseline. Twenty-four-hour urinary copper excretion was measured by inductively coupled plasma mass spectrometry. Multivariable linear and Cox regression analyses were performed.Results: In 693 KTR (57% men, 53 ± 13 years, estimated glomerular filtration rate [eGFR] 52 ± 20 mL/min/1.73 m2), baseline median urinary copper excretion was 23.6 (interquartile range 11.3–15.9) µg/24 h. Urinary protein excretion was positively associated with urinary copper excretion (standardized β = 0.39, p &lt; 0.001), and urinary copper excretion was positively associated with u-LFABP (standardized β = 0.29, p &lt; 0.001). During a median follow-up of 8 years, 109 (16%) KTR developed graft failure. KTR with relatively high copper excretion were at higher risk of long-term graft failure (hazard ratio [HR]: 1.57, 95% confidence interval [CI]: 1.32–1.86 per log2, p &lt; 0.001), independent of multiple potential confounders like eGFR, urinary protein excretion, and time after transplantation. A dose-response relationship was observed over increasing tertiles of copper excretion (HR: 5.03, 95% CI: 2.75–9.19, tertile 3 vs. 1, p &lt; 0.001). u-LFABP was a significant mediator of this association (74% of indirect effect, p &lt; 0.001). Conclusion: In KTR, urinary protein excretion is positively correlated with urinary copper excretion. In turn, higher urinary copper excretion is associated with an independent increased risk of kidney graft failure, with a substantial mediating effect through oxidative tubular damage. Further studies are warranted to investigate whether copper excretion-targeted interventions could improve kidney graft survival

    Exhaled Hydrogen as a Marker of Intestinal Fermentation Is Associated with Diarrhea in Kidney Transplant Recipients

    Get PDF
    Background: Diarrhea is common among kidney transplant recipients (KTR). Exhaled hydrogen (H2) is a surrogate marker of small bowel dysbiosis, which may drive diarrhea. We studied the relationship between exhaled H2 and diarrhea in KTR, and explored potential clinical and dietary determinants. Methods: Clinical, laboratory, and dietary data were analyzed from 424 KTR participating in the TransplantLines Biobank and Cohort Study (NCT03272841). Fasting exhaled H2 concentration was measured using a model DP Quintron Gas Chromatograph. Diarrhea was defined as fast transit time (types 6 and 7 according to the Bristol Stool Form Scale, BSFS) of 3 or more episodes per day. We studied the association between exhaled H2 and diarrhea with multivariable logistic regression analysis, and explored potential determinants using linear regression. Results: KTR (55.4 ± 13.2 years, 60.8% male, mean eGFR 49.8 ± 19.1 mL/min/1.73 m2) had a median exhaled H2 of 11 (5.0–25.0) ppm. Signs of small intestinal bacterial overgrowth (exhaled H2 ≥ 20 ppm) were present in 31.6% of the KTR, and 33.0% had diarrhea. Exhaled H2 was associated with an increased risk of diarrhea (odds ratio 1.51, 95% confidence interval 1.07–2.14 per log2 ppm, p = 0.02). Polysaccharide intake was independently associated with higher H2 (std. β 0.24, p = 0.01), and a trend for an association with proton-pump inhibitor use was observed (std. β 0.16 p = 0.05). Conclusion: Higher exhaled H2 is associated with an increased risk of diarrhea in KTR. Our findings set the stage for further studies investigating the relationship between dietary factors, small bowel dysbiosis, and diarrhea after kidney transplantation

    Learning Interpretable Rules for Multi-label Classification

    Full text link
    Multi-label classification (MLC) is a supervised learning problem in which, contrary to standard multiclass classification, an instance can be associated with several class labels simultaneously. In this chapter, we advocate a rule-based approach to multi-label classification. Rule learning algorithms are often employed when one is not only interested in accurate predictions, but also requires an interpretable theory that can be understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by revealing patterns and regularities contained in the data, a rule-based theory yields new insights in the application domain. Recently, several authors have started to investigate how rule-based models can be used for modeling multi-label data. Discussing this task in detail, we highlight some of the problems that make rule learning considerably more challenging for MLC than for conventional classification. While mainly focusing on our own previous work, we also provide a short overview of related work in this area.Comment: Preprint version. To appear in: Explainable and Interpretable Models in Computer Vision and Machine Learning. The Springer Series on Challenges in Machine Learning. Springer (2018). See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3077 for further informatio

    Urinary copper excretion is associated with long-term graft failure in kidney transplant recipients

    Get PDF
    Introduction: In chronic kidney disease, proteinuria increases urinary copper excretion, inducing oxidative tubular damage and worsening kidney function. We investigated whether this phenomenon occurred in kidney transplant recipients (KTRs). In addition, we studied the associations of urinary copper excretion with the biomarker of oxidative tubular damage urinary liver-type fatty-acid binding protein (u-LFABP) and death-censored graft failure.Methods: This prospective cohort study was performed in the Netherlands between 2008 and 2017, including outpatient KTR with a functioning graft for longer than 1 year, who were extensively phenotyped at baseline. Twenty-four-hour urinary copper excretion was measured by inductively coupled plasma mass spectrometry. Multivariable linear and Cox regression analyses were performed.Results: In 693 KTR (57% men, 53 ± 13 years, estimated glomerular filtration rate [eGFR] 52 ± 20 mL/min/1.73 m2), baseline median urinary copper excretion was 23.6 (interquartile range 11.3–15.9) µg/24 h. Urinary protein excretion was positively associated with urinary copper excretion (standardized β = 0.39, p &lt; 0.001), and urinary copper excretion was positively associated with u-LFABP (standardized β = 0.29, p &lt; 0.001). During a median follow-up of 8 years, 109 (16%) KTR developed graft failure. KTR with relatively high copper excretion were at higher risk of long-term graft failure (hazard ratio [HR]: 1.57, 95% confidence interval [CI]: 1.32–1.86 per log2, p &lt; 0.001), independent of multiple potential confounders like eGFR, urinary protein excretion, and time after transplantation. A dose-response relationship was observed over increasing tertiles of copper excretion (HR: 5.03, 95% CI: 2.75–9.19, tertile 3 vs. 1, p &lt; 0.001). u-LFABP was a significant mediator of this association (74% of indirect effect, p &lt; 0.001). Conclusion: In KTR, urinary protein excretion is positively correlated with urinary copper excretion. In turn, higher urinary copper excretion is associated with an independent increased risk of kidney graft failure, with a substantial mediating effect through oxidative tubular damage. Further studies are warranted to investigate whether copper excretion-targeted interventions could improve kidney graft survival

    Urinary copper excretion is associated with long-term graft failure in kidney transplant recipients

    Get PDF
    Introduction: In chronic kidney disease, proteinuria increases urinary copper excretion, inducing oxidative tubular damage and worsening kidney function. We investigated whether this phenomenon occurred in kidney transplant recipients (KTRs). In addition, we studied the associations of urinary copper excretion with the biomarker of oxidative tubular damage urinary liver-type fatty-acid binding protein (u-LFABP) and death-censored graft failure.Methods: This prospective cohort study was performed in the Netherlands between 2008 and 2017, including outpatient KTR with a functioning graft for longer than 1 year, who were extensively phenotyped at baseline. Twenty-four-hour urinary copper excretion was measured by inductively coupled plasma mass spectrometry. Multivariable linear and Cox regression analyses were performed.Results: In 693 KTR (57% men, 53 ± 13 years, estimated glomerular filtration rate [eGFR] 52 ± 20 mL/min/1.73 m2), baseline median urinary copper excretion was 23.6 (interquartile range 11.3–15.9) µg/24 h. Urinary protein excretion was positively associated with urinary copper excretion (standardized β = 0.39, p &lt; 0.001), and urinary copper excretion was positively associated with u-LFABP (standardized β = 0.29, p &lt; 0.001). During a median follow-up of 8 years, 109 (16%) KTR developed graft failure. KTR with relatively high copper excretion were at higher risk of long-term graft failure (hazard ratio [HR]: 1.57, 95% confidence interval [CI]: 1.32–1.86 per log2, p &lt; 0.001), independent of multiple potential confounders like eGFR, urinary protein excretion, and time after transplantation. A dose-response relationship was observed over increasing tertiles of copper excretion (HR: 5.03, 95% CI: 2.75–9.19, tertile 3 vs. 1, p &lt; 0.001). u-LFABP was a significant mediator of this association (74% of indirect effect, p &lt; 0.001). Conclusion: In KTR, urinary protein excretion is positively correlated with urinary copper excretion. In turn, higher urinary copper excretion is associated with an independent increased risk of kidney graft failure, with a substantial mediating effect through oxidative tubular damage. Further studies are warranted to investigate whether copper excretion-targeted interventions could improve kidney graft survival

    Urinary copper excretion is associated with long-term graft failure in kidney transplant recipients

    Get PDF
    Introduction: In chronic kidney disease, proteinuria increases urinary copper excretion, inducing oxidative tubular damage and worsening kidney function. We investigated whether this phenomenon occurred in kidney transplant recipients (KTRs). In addition, we studied the associations of urinary copper excretion with the biomarker of oxidative tubular damage urinary liver-type fatty-acid binding protein (u-LFABP) and death-censored graft failure.Methods: This prospective cohort study was performed in the Netherlands between 2008 and 2017, including outpatient KTR with a functioning graft for longer than 1 year, who were extensively phenotyped at baseline. Twenty-four-hour urinary copper excretion was measured by inductively coupled plasma mass spectrometry. Multivariable linear and Cox regression analyses were performed.Results: In 693 KTR (57% men, 53 ± 13 years, estimated glomerular filtration rate [eGFR] 52 ± 20 mL/min/1.73 m2), baseline median urinary copper excretion was 23.6 (interquartile range 11.3–15.9) µg/24 h. Urinary protein excretion was positively associated with urinary copper excretion (standardized β = 0.39, p &lt; 0.001), and urinary copper excretion was positively associated with u-LFABP (standardized β = 0.29, p &lt; 0.001). During a median follow-up of 8 years, 109 (16%) KTR developed graft failure. KTR with relatively high copper excretion were at higher risk of long-term graft failure (hazard ratio [HR]: 1.57, 95% confidence interval [CI]: 1.32–1.86 per log2, p &lt; 0.001), independent of multiple potential confounders like eGFR, urinary protein excretion, and time after transplantation. A dose-response relationship was observed over increasing tertiles of copper excretion (HR: 5.03, 95% CI: 2.75–9.19, tertile 3 vs. 1, p &lt; 0.001). u-LFABP was a significant mediator of this association (74% of indirect effect, p &lt; 0.001). Conclusion: In KTR, urinary protein excretion is positively correlated with urinary copper excretion. In turn, higher urinary copper excretion is associated with an independent increased risk of kidney graft failure, with a substantial mediating effect through oxidative tubular damage. Further studies are warranted to investigate whether copper excretion-targeted interventions could improve kidney graft survival

    Urinary copper excretion is associated with long-term graft failure in kidney transplant recipients

    Get PDF
    Introduction: In chronic kidney disease, proteinuria increases urinary copper excretion, inducing oxidative tubular damage and worsening kidney function. We investigated whether this phenomenon occurred in kidney transplant recipients (KTRs). In addition, we studied the associations of urinary copper excretion with the biomarker of oxidative tubular damage urinary liver-type fatty-acid binding protein (u-LFABP) and death-censored graft failure.Methods: This prospective cohort study was performed in the Netherlands between 2008 and 2017, including outpatient KTR with a functioning graft for longer than 1 year, who were extensively phenotyped at baseline. Twenty-four-hour urinary copper excretion was measured by inductively coupled plasma mass spectrometry. Multivariable linear and Cox regression analyses were performed.Results: In 693 KTR (57% men, 53 ± 13 years, estimated glomerular filtration rate [eGFR] 52 ± 20 mL/min/1.73 m2), baseline median urinary copper excretion was 23.6 (interquartile range 11.3–15.9) µg/24 h. Urinary protein excretion was positively associated with urinary copper excretion (standardized β = 0.39, p &lt; 0.001), and urinary copper excretion was positively associated with u-LFABP (standardized β = 0.29, p &lt; 0.001). During a median follow-up of 8 years, 109 (16%) KTR developed graft failure. KTR with relatively high copper excretion were at higher risk of long-term graft failure (hazard ratio [HR]: 1.57, 95% confidence interval [CI]: 1.32–1.86 per log2, p &lt; 0.001), independent of multiple potential confounders like eGFR, urinary protein excretion, and time after transplantation. A dose-response relationship was observed over increasing tertiles of copper excretion (HR: 5.03, 95% CI: 2.75–9.19, tertile 3 vs. 1, p &lt; 0.001). u-LFABP was a significant mediator of this association (74% of indirect effect, p &lt; 0.001). Conclusion: In KTR, urinary protein excretion is positively correlated with urinary copper excretion. In turn, higher urinary copper excretion is associated with an independent increased risk of kidney graft failure, with a substantial mediating effect through oxidative tubular damage. Further studies are warranted to investigate whether copper excretion-targeted interventions could improve kidney graft survival

    Plasma endotrophin, reflecting tissue fibrosis, is associated with graft failure and mortality in KTR:results from two prospective cohort studies

    Get PDF
    BACKGROUND: Fibrosis is a suggested cause of graft failure and mortality among kidney transplant recipients (KTR). Accumulating evidence suggests that collagen type VI is tightly linked to fibrosis, and may be a marker of systemic fibrosis and ageing. We studied whether plasma endotrophin, a pro-collagen type VI fragment, is associated with graft failure and mortality among KTR.METHODS: In cohort A, we measured plasma endotrophin in 690 prevalent KTR ≥ 1 year after transplantation (cohort A, 57% male, age 53 ± 13y). The non-overlapping cohort B included 500 incident KTR with serial endotrophin measurements before and after kidney transplantation, to assess trajectories and intra-individual variation of endotrophin.RESULTS: In cohort A, endotrophin was higher in KTR compared to healthy controls. Concentrations were positively associated with female sex, diabetes, cardiovascular disease, markers of inflammation and kidney injury. Importantly, endotrophin was associated with graft failure (HR per doubling: 1.87; 95%CI: 1.07 to 3.28) and mortality (HR per doubling: 2.59; 95%CI: 1.73 to 3.87) independent of potential confounders. Data from cohort B showed that endotrophin concentrations strongly decrease after transplantation, and remain stable during post-transplantation follow-up (intra-individual coefficient of variation: 5.0% [3.7%-7.6%]).CONCLUSIONS: Plasma endotrophin is strongly associated with graft failure and mortality among KTR. These findings suggest a key role of abnormal extracellular matrix turnover and fibrosis in graft and patient prognosis among KTR, and highlight the need for (interventional) studies targeting the pro-fibrotic state of KTR. The intra-individual stability after transplantation indicates potential use of endotrophin as a biomarker and outcome measure of fibrosis.</p
    • …
    corecore