24 research outputs found

    The role of cell death in the pathogenesis of autoimmune disease: HMGB1 and microparticles as intercellular mediators of inflammation

    Get PDF
    Cell death is critical to normal homeostasis, although this process, when increased aberrantly, can lead to the production of pro-inflammatory mediators promoting autoimmunity. Two novel intercellular mediators of inflammation generated during cell death are high mobility group box 1 (HMGB1) protein and microparticles (MPs). HMGB1 is a nuclear protein that functions in transcription when inside the nucleus but takes on pro-inflammatory properties when released during cell death. Microparticles are small, membrane-bound structures that extrude from cells when they die and contain cell surface proteins and nuclear material from their parent cells. MPs circulate widely throughout the vasculature and mediate long-distance communication between cells. Both MPs and HMGB1 have been implicated in the pathogenesis of a broad spectrum of inflammatory diseases, including the prototypic autoimmune conditions systemic lupus erythematosus and rheumatoid arthritis. Given their range of activity and association with active disease, both structures may prove to be targets for effective therapy in these and other disorders

    HDL Interfere with the Binding of T Cell Microparticles to Human Monocytes to Inhibit Pro-Inflammatory Cytokine Production

    Get PDF
    BACKGROUND: Direct cellular contact with stimulated T cells is a potent mechanism that induces cytokine production in human monocytes in the absence of an infectious agent. This mechanism is likely to be relevant to T cell-mediated inflammatory diseases such as rheumatoid arthritis and multiple sclerosis. Microparticles (MP) generated by stimulated T cells (MPT) display similar monocyte activating ability to whole T cells, isolated T cell membranes, or solubilized T cell membranes. We previously demonstrated that high-density lipoproteins (HDL) inhibited T cell contact- and MPT-induced production of IL-1beta but not of its natural inhibitor, the secreted form of IL-1 receptor antagonist (sIL-1Ra). METHODOLOGY/PRINCIPAL FINDINGS: Labeled MPT were used to assess their interaction with monocytes and T lymphocytes by flow cytometry. Similarly, interactions of labeled HDL with monocytes and MPT were assessed by flow cytometry. In parallel, the MPT-induction of IL-1beta and sIL-1Ra production in human monocytes and the effect of HDL were assessed in cell cultures. The results show that MPT, but not MP generated by activated endothelial cells, bond monocytes to trigger cytokine production. MPT did not bind T cells. The inhibition of IL-1beta production by HDL correlated with the inhibition of MPT binding to monocytes. HDL interacted with MPT rather than with monocytes suggesting that they bound the activating factor(s) of T cell surface. Furthermore, prototypical pro-inflammatory cytokines and chemokines such as TNF, IL-6, IL-8, CCL3 and CCL4 displayed a pattern of production induced by MPT and inhibition by HDL similar to IL-1beta, whereas the production of CCL2, like that of sIL-1Ra, was not inhibited by HDL. CONCLUSIONS/SIGNIFICANCE: HDL inhibit both MPT binding to monocytes and the MPT-induced production of some but not all cytokines, shedding new light on the mechanism by which HDL display their anti-inflammatory functions

    Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

    Get PDF
    Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy

    Erosive arthritis and hepatic granuloma formation induced by peptidoglycan polysaccharide in rats is aggravated by prasugrel treatment.

    Get PDF
    Administration of the thienopyridine P2Y12 receptor antagonist, clopidogrel, increased the erosive arthritis induced by peptidoglycan polysaccharide (PG-PS) in rats or by injection of the arthritogenic K/BxN serum in mice. To determine if the detrimental effects are caused exclusively by clopidogrel, we evaluated prasugrel, a third-generation thienopyridine pro-drug, that contrary to clopidogrel is mostly metabolized into its active metabolite in the intestine. Prasugrel effects were examined on the PG-PS-induced arthritis rat model. Erosive arthritis was induced in Lewis rats followed by treatment with prasugrel for 21 days. Prasugrel treated arthritic animals showed a significant increase in the inflammatory response, compared with untreated arthritic rats, in terms of augmented macroscopic joint diameter associated with significant signs of inflammation, histomorphometric measurements of the hind joints and elevated platelet number. Moreover, fibrosis at the pannus, assessed by immunofluorescence of connective tissue growth factor, was increased in arthritic rats treated with prasugrel. In addition to the arthritic manifestations, hepatomegaly, liver granulomas and giant cell formation were observed after PG-PS induction and even more after prasugrel exposure. Cytokine plasma levels of IL-1 beta, IL-6, MIP1 alpha, MCP1, IL-17 and RANTES were increased in arthritis-induced animals. IL-10 plasma levels were significantly decreased in animals treated with prasugrel. Overall, prasugrel enhances inflammation in joints and liver of this animal model. Since prasugrel metabolites inhibit neutrophil function ex-vivo and the effects of both clopidogrel and prasugrel metabolites on platelets are identical, we conclude that the thienopyridines metabolites might exert non-platelet effects on other immune cells to aggravate inflammation
    corecore