98 research outputs found

    Feasibility of informing syndrome-level empiric antibiotic recommendations using publicly available antibiotic resistance datasets.

    Get PDF
    Background: Antibiotics are often prescribed empirically to treat infection syndromes before causative bacteria and their susceptibility to antibiotics are identified. Guidelines on empiric antibiotic prescribing are key to effective treatment of infection syndromes, and need to be informed by likely bacterial aetiology and antibiotic resistance patterns. We aimed to create a clinically-relevant composite index of antibiotic resistance for common infection syndromes to inform recommendations at the national level. Methods: To create our index, we used open-access antimicrobial resistance (AMR) surveillance datasets, including the ECDC Surveillance Atlas, CDDEP ResistanceMap, WHO GLASS and the newly-available Pfizer ATLAS dataset. We integrated these with data on aetiology of common infection syndromes, existing empiric prescribing guidelines, and pricing and availability of antibiotics. Results:  The ATLAS dataset covered many more bacterial species (287) and antibiotics (52) than other datasets (ranges = 8-11 and 16-32 respectively), but had a similar number of samples per country per year. Using these data, we were able to make empiric prescribing recommendations for bloodstream infection, pneumonia and cellulitis/skin abscess in up to 44 countries. There was insufficient data to make national-level recommendations for the other six syndromes investigated. Results are presented in an interactive web app, where users can visualise underlying resistance proportions to first-line empiric antibiotics for infection syndromes and countries of interest. Conclusions: We found that whilst the creation of a composite resistance index for empiric antibiotic therapy was technically feasible, the ATLAS dataset in its current form can only inform on a limited number of infection syndromes. Other open-access AMR surveillance datasets are largely limited to bloodstream infection specimens and cannot directly inform treatment of other syndromes. With improving availability of international AMR data and better understanding of infection aetiology, this approach may prove useful for informing empiric prescribing decisions in settings with limited local AMR surveillance data

    What settings have been linked to SARS-CoV-2 transmission clusters?

    Get PDF
    Background: Concern about the health impact of novel coronavirus SARS-CoV-2 has resulted in widespread enforced reductions in people's movement ("lockdowns"). However, there are increasing concerns about the severe economic and wider societal consequences of these measures. Some countries have begun to lift some of the rules on physical distancing in a stepwise manner, with differences in what these "exit strategies" entail and their timeframes. The aim of this work was to inform such exit strategies by exploring the types of indoor and outdoor settings where transmission of SARS-CoV-2 has been reported to occur and result in clusters of cases. Identifying potential settings that result in transmission clusters allows these to be kept under close surveillance and/or to remain closed as part of strategies that aim to avoid a resurgence in transmission following the lifting of lockdown measures. Methods: We performed a systematic review of available literature and media reports to find settings reported in peer reviewed articles and media with these characteristics. These sources are curated and made available in an editable online database. Results: We found many examples of SARS-CoV-2 clusters linked to a wide range of mostly indoor settings. Few reports came from schools, many from households, and an increasing number were reported in hospitals and elderly care settings across Europe. Conclusions: We identified possible places that are linked to clusters of COVID-19 cases and could be closely monitored and/or remain closed in the first instance following the progressive removal of lockdown restrictions. However, in part due to the limits in surveillance capacities in many settings, the gathering of information such as cluster sizes and attack rates is limited in several ways: inherent recall bias, biased media reporting and missing data

    Modelling the synergistic effect of bacteriophage and antibiotics on bacteria: Killers and drivers of resistance evolution.

    Get PDF
    Bacteriophage (phage) are bacterial predators that can also spread antimicrobial resistance (AMR) genes between bacteria by generalised transduction. Phage are often present alongside antibiotics in the environment, yet evidence of their joint killing effect on bacteria is conflicted, and the dynamics of transduction in such systems are unknown. Here, we combine in vitro data and mathematical modelling to identify conditions where phage and antibiotics act in synergy to remove bacteria or drive AMR evolution. We adapt a published model of phage-bacteria dynamics, including transduction, to add the pharmacodynamics of erythromycin and tetracycline, parameterised from new in vitro data. We simulate a system where two strains of Staphylococcus aureus are present at stationary phase, each carrying either an erythromycin or tetracycline resistance gene, and where multidrug-resistant bacteria can be generated by transduction only. We determine rates of bacterial clearance and multidrug-resistant bacteria appearance, when either or both antibiotics and phage are present at varying timings and concentrations. Although phage and antibiotics act in synergy to kill bacteria, by reducing bacterial growth antibiotics reduce phage production. A low concentration of phage introduced shortly after antibiotics fails to replicate and exert a strong killing pressure on bacteria, instead generating multidrug-resistant bacteria by transduction which are then selected for by the antibiotics. Multidrug-resistant bacteria numbers were highest when antibiotics and phage were introduced simultaneously. The interaction between phage and antibiotics leads to a trade-off between a slower clearing rate of bacteria (if antibiotics are added before phage), and a higher risk of multidrug-resistance evolution (if phage are added before antibiotics), exacerbated by low concentrations of phage or antibiotics. Our results form hypotheses to guide future experimental and clinical work on the impact of phage on AMR evolution, notably for studies of phage therapy which should investigate varying timings and concentrations of phage and antibiotics

    Quantifying patient- and hospital-level antimicrobial resistance dynamics in Staphylococcus aureus from routinely collected data

    Get PDF
    Introduction. Antimicrobial resistance (AMR) to all antibiotic classes has been found in the pathogen Staphylococcus aureus . The reported prevalence of these resistances varies, driven by within-host AMR evolution at the patient level, and between-host transmission at the hospital level. Without dense longitudinal sampling, pragmatic analysis of AMR dynamics at multiple levels using routine surveillance data is essential to inform control measures. Gap Statement. The value and limitations of routinely collected hospital data to gain insight into AMR dynamics at the hospital and individual levels simultaneously are unclear. Methodology. We explored S. aureus AMR diversity in 70 000 isolates from a UK paediatric hospital between 2000–2021, using electronic datasets containing multiple routinely collected isolates per patient with phenotypic antibiograms and information on hospitalization and antibiotic consumption. Results. At the hospital level, the proportion of isolates that were meticillin-resistant (MRSA) increased between 2014–2020 from 25–50 %, before sharply decreasing to 30%, likely due to a change in inpatient demographics. Temporal trends in the proportion of isolates resistant to different antibiotics were often correlated in MRSA, but independent in meticillin-susceptible S. aureus . Ciprofloxacin resistance in MRSA decreased from 70–40 % of tested isolates between 2007–2020, likely linked to a national policy to reduce fluoroquinolone usage in 2007. At the patient level, we identified frequent AMR diversity, with 4 % of patients ever positive for S. aureus simultaneously carrying, at some point, multiple isolates with different resistances. We detected changes over time in AMR diversity in 3 % of patients ever positive for S. aureus . These changes equally represented gain and loss of resistance. Conclusion. Within this routinely collected dataset, we found that 65 % of changes in resistance within a patient’s S. aureus population could not be explained by antibiotic exposure or between-patient transmission of bacteria, suggesting that within-host evolution via frequent gain and loss of AMR genes may be responsible for these changing AMR profiles. Our study highlights the value of exploring existing routine surveillance data to determine underlying mechanisms of AMR. These insights may substantially improve our understanding of the importance of antibiotic exposure variation, and the success of single S. aureus clones

    Drivers and trajectories of resistance to new first-line drug regimens for tuberculosis.

    Get PDF
    BACKGROUND: New first-line drug regimens for treatment of tuberculosis (TB) are in clinical trials: emergence of resistance is a key concern. Because population-level data on resistance cannot be collected in advance, epidemiological models are important tools for understanding the drivers and dynamics of resistance before novel drug regimens are launched. METHODS: We developed a transmission model of TB after launch of a new drug regimen, defining drug-resistant TB (DR-TB) as resistance to the new regimen. The model is characterized by (1) the probability of acquiring resistance during treatment, (2) the transmission fitness of DR-TB relative to drug-susceptible TB (DS-TB), and (3) the probability of treatment success for DR-TB versus DS-TB. We evaluate the effect of each factor on future DR-TB prevalence, defined as the proportion of incident TB that is drug-resistant. RESULTS: Probability of acquired resistance was the strongest predictor of the DR-TB proportion in the first 5 years after the launch of a new drug regimen. Over a longer term, however, the DR-TB proportion was driven by the resistant population's transmission fitness and treatment success rates. Regardless of uncertainty in acquisition probability and transmission fitness, high levels (>10%) of drug resistance were unlikely to emerge within 50 years if, among all cases of TB that were detected, 85% of those with DR-TB could be appropriately diagnosed as such and then successfully treated. CONCLUSIONS: Short-term surveillance cannot predict long-term drug resistance trends after launch of novel first-line TB regimens. Ensuring high treatment success of drug-resistant TB through early diagnosis and appropriate second-line therapy can mitigate many epidemiological uncertainties and may substantially slow the emergence of drug-resistant TB

    Bridging the gap between evidence and policy for infectious diseases: How models can aid public health decision-making.

    Get PDF
    The dominant approach to decision-making in public health policy for infectious diseases relies heavily on expert opinion, which often applies empirical evidence to policy questions in a manner that is neither systematic nor transparent. Although systematic reviews are frequently commissioned to inform specific components of policy (such as efficacy), the same process is rarely applied to the full decision-making process. Mathematical models provide a mechanism through which empirical evidence can be methodically and transparently integrated to address such questions. However, such models are often considered difficult to interpret. In addition, models provide estimates that need to be iteratively re-evaluated as new data or considerations arise. Using the case study of a novel diagnostic for tuberculosis, a framework for improved collaboration between public health decision-makers and mathematical modellers that could lead to more transparent and evidence-driven policy decisions for infectious diseases in the future is proposed. The framework proposes that policymakers should establish long-term collaborations with modellers to address key questions, and that modellers should strive to provide clear explanations of the uncertainty of model structure and outputs. Doing so will improve the applicability of models and clarify their limitations when used to inform real-world public health policy decisions

    Global burden of latent multidrug-resistant tuberculosis: trends and estimates based on mathematical modelling.

    Get PDF
    BACKGROUND: To end the global tuberculosis epidemic, latent tuberculosis infection needs to be addressed. All standard treatments for latent tuberculosis contain drugs to which multidrug-resistant (MDR) Mycobacterium tuberculosis is resistant. We aimed to estimate the global burden of multidrug-resistant latent tuberculosis infection to inform tuberculosis elimination policy. METHODS: By fitting a flexible statistical model to tuberculosis drug resistance surveillance and survey data collated by WHO, we estimated national trends in the proportion of new tuberculosis cases that were caused by MDR strains. We used these data as a proxy for the proportion of new infections caused by MDR M tuberculosis and multiplied trends in annual risk of infection from previous estimates of the burden of latent tuberculosis to generate trends in the annual risk of infection with MDR M tuberculosis. These estimates were used in a cohort model to estimate changes in the global and national prevalence of latent infection with MDR M tuberculosis. We also estimated recent infection levels (ie, in 2013 and 2014) and made predictions for the future burden of MDR tuberculosis in 2035 and 2050. FINDINGS: 19·1 million (95% uncertainty interval [UI] 16·4 million-21·7 million) people were latently infected with MDR tuberculosis in 2014-a global prevalence of 0·3% (95% UI 0·2-0·3). MDR strains accounted for 1·2% (95% UI 1·0-1·4) of the total latent tuberculosis burden overall, but for 2·9% (95% UI 2·6-3·1) of the burden among children younger than 15 years (risk ratio for those younger than 15 years vs those aged 15 years or older 2·65 [95% UI 2·11-3·25]). Recent latent infection with MDR M tuberculosis meant that 1·9 million (95% UI 1·7 million-2·3 million) people globally were at high risk of active MDR tuberculosis in 2015. INTERPRETATION: We estimate that three in every 1000 people globally carry latent MDR tuberculosis infection, and prevalence is around ten times higher among those younger than 15 years. If current trends continue, the proportion of latent tuberculosis caused by MDR strains will increase, which will pose serious challenges for management of latent tuberculosis-a cornerstone of tuberculosis elimination strategies. FUNDING: UK Medical Research Council, Bill & Melinda Gates Foundation, and European Research Council
    corecore