286 research outputs found

    An Efficient Algorithm for Clustering of Large-Scale Mass Spectrometry Data

    Full text link
    High-throughput spectrometers are capable of producing data sets containing thousands of spectra for a single biological sample. These data sets contain a substantial amount of redundancy from peptides that may get selected multiple times in a LC-MS/MS experiment. In this paper, we present an efficient algorithm, CAMS (Clustering Algorithm for Mass Spectra) for clustering mass spectrometry data which increases both the sensitivity and confidence of spectral assignment. CAMS utilizes a novel metric, called F-set, that allows accurate identification of the spectra that are similar. A graph theoretic framework is defined that allows the use of F-set metric efficiently for accurate cluster identifications. The accuracy of the algorithm is tested on real HCD and CID data sets with varying amounts of peptides. Our experiments show that the proposed algorithm is able to cluster spectra with very high accuracy in a reasonable amount of time for large spectral data sets. Thus, the algorithm is able to decrease the computational time by compressing the data sets while increasing the throughput of the data by interpreting low S/N spectra.Comment: 4 pages, 4 figures, Bioinformatics and Biomedicine (BIBM), 2012 IEEE International Conference o

    Pathways of urea transport in the mammalian kidney

    Get PDF
    Urea is the chief end product of nitrogen metabolism in mammals. Most of the urea produced is excreted by the kidneys. Excretion of a large fraction of the urea filtered by the glomerulus is required to keep pace with the rate of hepatic urea production. Consequently, the maintenance of nitrogen balance depends on a sustained high rate of renal urea excretion. One factor that might challenge the ability of the kidney to maintain a high rate of urea excretion is the need to limit water excretion. Theoretically, an increase in water absorption along the nephron would be expected to increase luminal urea concentration and consequently increase the driving force for passive urea reabsorption. Indeed, as demonstrated originally by Shannon [1] and confirmed in many subsequent studies, the rate of urea excretion decreases when water excretion decreases. However, the decline in urea excretion is relatively modest, even when the rate of water excretion is very low. In Shannon's studies in dogs [1], when water diuresis was established (water excretion 5–10 percent of filtered load), urea excretion was about 60 percent of the filtered load. During antidiuresis, when water excretion was reduced by 95% or more (to less than 0.5 percent of the glomerular filtration rate), urea excretion fell only by 25 to 30% (to 40 to 45 percent of the filtered load)

    Concentrating defect in experimental nephrotic syndrome: Altered expression of aquaporins and thick ascending limb Na+ transporters

    Get PDF
    Concentrating defect in experimental nephrotic syndrome: Altered expression of aquaporins and thick ascending limb Na+ transporters.BackgroundSeveral pathophysiological states associated with deranged water balance are associated with altered expression and/or intracellular distribution of aquaporin water channels. The possible role of dysregulation of thick ascending limb NaCl transporters, which are responsible for countercurrent multiplication in the kidney, has not been evaluated.MethodsSemiquantitative immunoblotting and immunocytochemistry were carried out in the kidneys of rat with adriamycin-induced nephrotic syndrome and in vehicle-injected control rats.ResultsPreliminary studies confirmed the presence of a severe concentrating defect. Semiquantitative immunoblotting of outer medullary homogenates demonstrated a marked decrease in the abundance of three thick ascending limb Na+ transporters in nephrotic rats, namely the bumetanide-sensitive Na-K-2Cl cotransporter (BSC-1), the type 3 Na/H exchanger (NHE-3), and the α1-subunit of the Na-K-ATPase. These results are predictive of a decrease in the NaCl transport capacity of the medullary thick ascending limb and therefore a decrease in countercurrent multiplication. Immunocytochemistry of outer medullary thin sections demonstrated broad (but highly variable) suppression of BSC-1 expression in the outer medullas of adriamycin-nephrotic rats. There was also a large decrease in outer medullary expression of two collecting duct water channels (aquaporin-2 and -3) and the major water channel of the thin descending limb of Henle’s loop (aquaporin-1).ConclusionThe concentrating defect in adriamycin-induced nephrotic syndrome in rats is a consequence of multiple defects in water and solute transporter expression, which would alter both the generation of medullary interstitial hypertonicity and osmotic equilibration in the collecting duct. Whether a similar widespread defect in transporter expression is present in idiopathic nephrotic syndrome in humans is, at this point, untested

    Expression and functional implications of the renal apelinergic system in rodents

    Get PDF
    Apelin binds to the G protein-coupled apelin receptor (APJ; gene name aplnr) to modulate diverse physiological systems including cardiovascular function, and hydromineral and metabolic balance. Recently a second endogenous ligand for APJ, named apela, has been discovered. We confirm that apela activates signal transduction pathways (ERK activation) in cells expressing the cloned rat APJ. Previous studies suggest that exogenous apela is diuretic, attributable wholly or in part to an action on renal APJ. Thus far the cellular distribution of apela in the kidney has not been reported. We have utilized in situ hybridization histochemistry to reveal strong apela labelling in the inner medulla (IM), with lower levels observed in the inner stripe of the outer medulla (ISOM), of rat and mouse kidneys. This contrasts with renal aplnr expression where the converse is apparent, with intense labelling in the ISOM (consistent with vasa recta labelling) and low-moderate hybridization in the IM, in addition to labelling of glomeruli. Apelin is found in sparsely distributed cells amongst more prevalent aplnr-labelled cells in extra-tubular regions of the medulla. This expression profile is supported by RNA-Seq data that shows that apela, but not apelin or aplnr, is highly expressed in microdissected rat kidney tubules. If endogenous tubular apela promotes diuresis in the kidney it could conceivably do this by interacting with APJ in vasculature, or via an unknown receptor in the tubules. The comparative distribution of apela, apelin and aplnr in the rodent kidney lays the foundation for future work on how the renal apelinergic system interacts

    CHIP28 water channels are localized in constitutively water-permeable segments of the nephron

    Get PDF
    The sites of water transport along the nephron are well characterized, but the molecular basis of renal water transport remains poorly understood. CHIP28 is a 28-kD integral protein which was proposed to mediate transmembrane water movement in red cells and kidney (Preston, G. M., T. P. Carroll, W. B. Guggino, and P. Agre. 1992. Science [Wash. DC]. 256:385-387). To determine whether CHIP28 could account for renal epithelial water transport, we used specific polyclonal antibodies to quantitate and localize CHIP28 at cellular and subcellular levels in rat kidney using light and electron microscopy. CHIP28 comprised 3.8% of isolated proximal tubule brush border protein. Except for the first few cells of the S1 segment, CHIP28 was immunolocalized throughout the convoluted and straight proximal tubules where it was observed in the microvilli of the apical brush border and in basolateral membranes. Very little CHIP28 was detected in endocytic vesicles or other intracellular structures in proximal tubules. Uninterrupted, heavy immunostaining of CHIP28 was also observed over both apical and basolateral membranes of descending thin limbs, including both short and long loops of Henle. These nephron sites have constitutively high osmotic water permeabilities. CHIP28 was not detected in ascending thin limbs, thick ascending limbs, or distal tubules, which are highly impermeable to water. Moreover, CHIP28 was not detected in collecting duct epithelia, where water permeability is regulated by antidiuretic hormone. These determinations of abundance and structural organization provide evidence that the CHIP28 water channel is the predominant pathway for constitutive transepithelial water transport in the proximal tubule and descending limb of Henle's loop

    Rosiglitazone Activates Renal Sodium-and Water-Reabsorptive Pathways and Lowers Blood Pressure in Normal Rats

    Get PDF
    ABSTRACT Synthetic agonists of the peroxisomal proliferator-activated receptor subtype ␥ (PPAR-␥) are highly beneficial in the treatment of type II diabetes. However, they are also associated with fluid retention and edema, potentially serious side effects of unknown origin. These studies were designed to test the hypothesis that rosiglitazone (RGZ, PPAR-␥ agonist) may activate sodium-and water-reabsorptive processes in the kidney, possibly in response to a drop in mean arterial blood pressure (MAP), as well as directly through PPAR-␥. Targeted proteomics of the major renal sodium and water transporters and channel proteins was used to identify potentially regulated sites of renal sodium and water reabsorption. RGZ (47 or 94 mg/kg diet) was fed to male, Sprague-Dawley rats (ϳ270g) for 3 days. MAP, measured by radiotelemetry, was decreased significantly in rats fed either level of RGZ, relative to control rats. Delta MAP from baseline was Ϫ3.2 Ϯ 1.2 mm Hg in rats fed high-dose RGZ versus ϩ 3.4 Ϯ 0.8 for rats fed control diet. RGZ did not affect feed or water intake, but rats treated with high-dose RGZ had decreased urine volume (by 22%), sodium excretion (44%), kidney weight (9%), and creatinine clearance (35%). RGZ increased whole kidney protein abundance of the ␣-1 subunit of Na-K-ATPase, the bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2), the sodium hydrogen exchanger (NHE3), the aquaporins 2 and 3, and endothelial nitric-oxide synthase. We conclude that both increases in renal tubule transporter abundance and a decrease in glomerular filtration rate likely contribute to the RGZ-induced sodium retention

    Vasopressin and oxytocin receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Vasopressin (AVP) and oxytocin (OT) receptors (nomenclature as recommended by NC-IUPHAR [92]) are activated by the endogenous cyclic nonapeptides vasopressin and oxytocin. These peptides are derived from precursors which also produce neurophysins (neurophysin I for oxytocin; neurophysin II for vasopressin). Vasopressin and oxytocin differ at only 2 amino acids (positions 3 and 8). There are metabolites of these neuropeptides that may be biologically active [67]

    Vasopressin and oxytocin receptors in GtoPdb v.2023.1

    Get PDF
    Vasopressin (AVP) and oxytocin (OT) receptors (nomenclature as recommended by NC-IUPHAR [94]) are activated by the endogenous cyclic nonapeptides vasopressin and oxytocin. These peptides are derived from precursors which also produce neurophysins (neurophysin I for oxytocin; neurophysin II for vasopressin). Vasopressin and oxytocin differ at only 2 amino acids (positions 3 and 8). There are metabolites of these neuropeptides that may be biologically active [69]
    corecore