389 research outputs found

    Seasonal variations in antibiotic resistance gene transport in the Almendares River, Havana, Cuba

    Get PDF
    Numerous studies have quantified antibiotic resistance genes (ARG) in rivers and streams around the world, and significant relationships have been shown that relate different pollutant outputs and increased local ARG levels. However, most studies have not considered ambient flow conditions, which can vary dramatically especially in tropical countries. Here, ARG were quantified in water column and sediment samples during the dry- and wet-seasons to assess how seasonal and other factors influence ARG transport down the Almendares River (Havana, Cuba). Eight locations were sampled and stream flow estimated during both seasons; qPCR was used to quantify four tetracycline, two erythromycin, and three beta-lactam resistance genes. ARG concentrations were higher in wet-season versus dry-season samples, which combined with higher flows, indicated much greater ARG transport downstream during the wet-season. However, water column ARG levels were more spatially variable in the dry-season than the wet-season, with the proximity of waste outfalls strongly influencing local ARG levels. Results confirm that dry-season sampling provides a useful picture of the impact of individual waste inputs on local stream ARG levels, whereas the majority of ARGs in this tropical river were transported downstream during the wet-season, possibly due to re-entrainment of ARG from sediments

    Predicting Antibiotic Resistance, Not Just for Quinolones

    Get PDF
    The ability to better understand and predict the onset of antibiotic resistance to new drugs is needed. Antibiotic resistance has become an emerging issue of concern, and there are emphases to minimize its escalation. The number of cases of antibiotic resistant infections is increasing, as are the numbers of multidrug resistant bacteria. As a result, more antibiotics are becoming of limited use and previous attempts to tackle the resistance problem remain relatively ineffective. If we can more effectively anticipate how and when resistance is likely to arise, we can better manage drug use and perhaps extend efficacy of chemical treatment

    Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water

    Get PDF
    Chlorination is commonly used to control levels of bacteria in drinking water; however, viable bacteria may remain due to chlorine resistance. What may be concerning is that surviving bacteria, due to co-selection factors, may also have increased resistance to common antibiotics. This would pose a public health risk as it could link resistant bacteria in the natural environment to human population. Here, we investigated the relationship between chlorine- and antibiotic-resistances by harvesting 148 surviving bacteria from chlorinated drinking-water systems and compared their susceptibilities against chlorine disinfectants and antibiotics. Twenty-two genera were isolated, including members of Paenibacillus, Burkholderia, Escherichia, Sphingomonas and Dermacoccus species. Weak (but significant) correlations were found between chlorine-tolerance and minimum inhibitory concentrations against the antibiotics tetracycline, sulfamethoxazole and amoxicillin, but not against ciprofloxacin; this suggest that chlorine-tolerant bacteria are more likely to also be antibiotic resistant. Further, antibiotic-resistant bacteria survived longer than antibiotic-sensitive organisms when exposed to free chlorine in a contact-time assay; however, there were little differences in susceptibility when exposed to monochloramine. Irrespective of antibiotic-resistance, spore-forming bacteria had higher tolerance against disinfection compounds. The presence of chlorine-resistant bacteria surviving in drinking-water systems may also carry additional risk of antibiotic resistance

    The use of minimum selectable concentrations (MSCs) for determining the selection of antimicrobial resistant bacteria

    Get PDF
    The use of antimicrobial compounds is indispensable in many industries, especially drinking water production, to eradicate microorganisms. However, bacterial growth is not unusual in the presence of disinfectant concentrations that would be typically lethal, as bacterial populations can develop resistance. The common metric of population resistance has been based on the Minimum Inhibitory Concentration (MIC), which is based on bacteria lethality. However, sub-lethal concentrations may also select for resistant bacteria due to the differences in bacterial growth rates. This study determined the Minimal Selective Concentrations (MSCs) of bacterial populations exposed to free chlorine and monochloramine, representing a metric that possibly better reflects the selective pressures occurring at lower disinfectant levels than MIC. Pairs of phylogenetically similar bacteria were challenged to a range of concentrations of disinfectants. The MSCs of free chlorine and monochloramine were found to range between 0.021 and 0.39 mg L-1, which were concentrations 1/250 to 1/5 than the MICs of susceptible bacteria (MICsusc). This study indicates that sub-lethal concentrations of disinfectants could result in the selection of resistant bacterial populations, and MSCs would be a more sensitive indicator of selective pressure, especially in environmental systems

    Antibiotic resistant bacteria found in municipal drinking water

    Get PDF
    Multidrug resistant bacteria in water supply systems have been emerging as a growing public health concern. Many factors affect the source and fate of these bacteria. However, conditions in the distribution systems may contribute in the dispersion of resistance genes among bacterial populations. Through the process of lateral gene transfer, resistance genetic material can be exchanged between species in the microbial population, intensifying the problem of resistance genes. The main aim of this study was to investigate the diversity of microorganisms in tap-water in Glasgow, Scotland, and the occurrence of certain antibiotic resistance genes and gene-transfer mechanisms. Results show that antibiotic resistant bacteria exist at the consumers’ end of the distribution system, some of which also contain integrase genes, which can aid in the dispersion of resistance genes. Presence of such microorganisms indicates that further investigations should be taken to assess the risks to public health

    Rapid selection of antimicrobial resistant bacteria in complex water systems by chlorine and pipe materials

    Get PDF
    Antimicrobial resistance is a major health issue induced by the overuse of antibiotics and disinfection reagents, e.g. chlorine. Resistant bacteria thus occur in water supply systems, and they transfer genes to other microbial populations, including pathogens. Treatment and inactivation of resistant bacteria are difficult in complex systems because the behaviour of resistant bacteria in such systems is poorly known, as most previous investigations are commonly performed in pure media. Therefore, we tested here the effect of 0.5 mg/mL chlorine and pipe materials made of polyvinyl chloride (PVC), copper and cement, on microbial populations in biofilms, during 5 days. Bacterial survival was monitored by viable counts, and resistant genes were analysed by quantitative polymerase chain reaction (qPCR). Results show that, in 56% of the cases, resistant bacteria became immediately enriched into biofilms due to chlorine exposure. Higher proportion of resistant bacteria were found in biofilms on PVC and copper pipes. Our findings imply that resistant microbial strains are very rapidly selected and that the pipe material has an influence on microbial selection

    Deep chlorophyll maxima in small boreal forest lakes after experimental catchment and shoreline logging

    Get PDF
    In situ profiles of chlorophyll fluorescence combined with depth-specific water chemistry and biotic analysis were used to assess deep chlorophyll maxima (DCM) in four boreal shield lakes that were subjected to different levels of watershed disturbance by clear-cut logging. Phytoplankton communities within the DCPvl varied among lakes, but were generally comprised of chrysophytes, diatoms, and cryptophytes. One lake also had deep cyanobacterial populations. Relative in situ fluorescence (absolute fluorescence at each peak minus background fluorescence) at the fluorescence peaks was significantly correlated with the level of chlorophyll a at the peak (r(2) = 0.81, p < 0.025) for all lakes. In general, DCM peak heights were consistent in each lake over the four-year post-logging sampling period, whereas DCM depths declined slightly in the most heavily logged takes associated with increases in dissolved organic carbon. Therefore, on the basis of DCM data, only mild effects on lake water quality were apparent after the logging activity

    Appearance of β-lactam resistance genes in agricultural soils and clinical isolates over the 20th century

    Get PDF
    Debate exists about whether agricultural versus medical antibiotic use primarily drives increasing antibiotic resistance (AR) across nature. Both sectors have been historically inconsistent at antibiotic stewardship and, as a result, acquired bacterial AR has progressively increased over the 20th century. The question is which sector has most influenced changes in acquired AR. To examine this question, we quantified four broad spectrum β-lactam AR (ARG; blaTEM, blaSHV, blaOXA and blaCTX-M) and class 1 integron genes (int1) in soils archived since 1894 from Askov Experimental Station, Denmark. ARG levels were significantly higher in post-1940 soils that only received manure (M) versus inorganic fertilisers (IF) (paired-t test; p < 0.001). However, first appearance of each ARG varied over historic time; blaTEM and blaSHV between 1963 and 1974, blaOXA slightly later, and blaCTX-M in 1989, dates that parallel appearance of each ARG in hospital isolates, suggesting their parallel occurrence in animal manure and human patients. It is not possible to determine whether farm versus hospital AR appeared first, but archive data imply they are mutually influential. Interestingly, levels of β-lactam ARGs in the M soils, especially blaCTX-M, declined since the mid-1990s, which aligns with reduced non-therapeutic antibiotic use in Danish agriculture. These data suggest improved antibiotic stewardship can reduce soil ARG reservoirs, although it also shows reduced manure applications to agricultural soils should be included in prudent stewardship programmes

    Antibiotic Resistance Gene Abundances Associated with Waste Discharges to the Almendares River near Havana, Cuba

    Get PDF
    Considerable debate exists over the primary cause of increased antibiotic resistance (AR) worldwide. Evidence suggests increasing AR results from overuse of antibiotics in medicine and therapeutic and nontherapeutic applications in agriculture. However, pollution also can influence environmental AR, particularly associated with heavy metal, pharmaceutical, and other waste releases, although the relative scale of the “pollution” contribution is poorly defined, which restricts targeted mitigation efforts. The question is “where to study and quantify AR from pollution versus other causes to best understand the pollution effect”. One useful site is Cuba because industrial pollution broadly exists; antibiotics are used sparingly in medicine and agriculture; and multiresistant bacterial infections are increasing in clinical settings without explanation. Within this context, we quantified 13 antibiotic resistance genes (ARG; indicators of AR potential), 6 heavy metals, 3 antibiotics, and 17 other organic pollutants at 8 locations along the Almendares River in western Havana at sites bracketing known waste discharge points, including a large solid waste landfill and various pharmaceutical factories. Significant correlations (p < 0.05) were found between sediment ARG levels, especially for tetracyclines and β-lactams (e.g., tet(M), tet(O), tet(Q), tet(W), blaOXA), and sediment Cu and water column ampicillin levels in the river. Further, sediment ARG levels increased by up to 3 orders of magnitude downstream of the pharmaceutical factories and were highest where human population densities also were high. Although explicit links are not shown, results suggest that pollution has increased background AR levels in a setting where other causes of AR are less prevalent
    corecore