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Abstract: Multidrug resistant bacteria in water supply systems have been emerging as a 

growing public health concern. Many factors affect the source and fate of these 

bacteria. However, conditions in the plumbing systems may contribute in the 

dispersion of resistance genes among bacterial populations. Through the process of 

lateral gene transfer, resistance genetic material can be exchanged between species 

in the microbial population, intensifying the problem of resistance genes. The main 

aim of this study was to investigate the diversity of microorganisms in tap-water in 

Glasgow, Scotland, and the occurrence of certain antibiotic resistance genes and 

gene-transfer mechanisms. Results show that antibiotic resistant bacteria exist at the 

consumers’ end of the distribution system, some of which also contain integrase 

genes, which can aid in the dispersion of resistance genes. Presence of such 

microorganisms indicates that further investigations should be taken to assess the 

risks to public health.  
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Highlights 

• Plumbing systems contain antibiotic resistance bacteria 

• sul1 and sul2 genes are found in bacteria which show resistance against sulfonamides 
drugs 

• The presence of integrons suggests that resistance traits can be transferred to other 
bacteria 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 Introduction 

Supply of safe drinking water to the population of the world remains one of the major concerns 

for public health. Many factors impact this provision, including increasing world population, 

limited freshwater resources, and pollution. Contemporary issues affecting supply include 

contamination with chemical compounds, e.g. pharmaceutical and personal care products, and 

biological agents, which can contribute to increase antimicrobial resistance in bacteria (Batt et 

al. 2006; Larsson et al. 2007; Fick et al. 2009; Pruden et al. 2013; Hartmann et al., 2014). The 

use of these chemicals has been increased to a point that propagation of antimicrobial resistance 

has become unavoidable, and it is now considered an emerging contaminant of concern in the 

environment (Pruden et al. 2006). In urban areas, water treatment plants utilise multiple 

technologies to remove many pollutants (Xu et al. 2007), while integrated constructed wetlands 

are used in rural areas for removal of pollutants and resistance genes (Chen et al. 2015a), 

however these systems are never entirely effective (Xu et al. 2007).  

Various processes in the treatment plants (Armstrong et al. 1981), and the physical and 

chemical nature of the long distribution systems, facilitate the enrichment of bacteria and their 

genes. Attachment to particulates, capsule formation and increased tolerance of bacteria to 

chemical disinfectants help in the survival and spread of resistant organisms in water supply 

systems (Ridgway and Olson 1982; LeChevallier et al. 1984; LeChevallier et al. 1988; Bridier 

et al. 2011, Wingender and Flemming 2011). 

The presence of antimicrobial resistant bacteria and their genes in water bodies is not limited 

to under-developed countries (Khan et al. 2013; Ahammad et al. 2014); they have been found 

in developed nations including Australia, Germany and the United Kingdom (Stoll et al. 2012). 

Many enteric bacteria with multiple drug resistance (MDR), e.g., Escherichia, Enterobacter, 

Klebsiella, Salmonella and Shigella species, have been found in drinking and recreational water 

resources (Kumar et al. 2013). Previously, both Gram-positive and Gram-negative bacteria, 
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including Staphylococcus, Alcaligenes, and Acinetobacter species, have been reported in 

drinking-water distribution systems (Armstrong et al. 1981). Antibiotic resistant Pseudomonas 

species have also been isolated from drinking water (Vaz-Moreira et al. 2012; Ribeiro et al. 

2014). The presence of MDR in the clinical environment makes the treatment of diseases 

difficult (Ashbolt et al. 2013); their presence in water bodies, and increased exposure risk, may 

necessitate enhanced water treatment and increase expense. 

Bacteria isolated from drinking water may not only contain antibiotic resistance, they may 

also express resistance to commonly used disinfectants, including chlorine and 

monochloramine (Ridgway and Olson 1982; Chiao et al. 2014, Khan et al, 2016). These 

disinfectants are indispensable in water treatment plants to eradicate bacteria and minimise the 

growth of bacteria in the distribution system. Resistance develops upon exposure to sub-

inhibitory concentrations over time, and a number of bacterial species with monochloramine 

resistance have been reported in drinking water, including: Coxiella, Desulfuromonas, 

Desulfomonile, Escherichia, Geobacter, Legionella, Mycobacterium, and Sphingomonas 

species (Chiao et al. 2014). 

Besides physical and chemical processes, genetic factors contribute to the dispersion of 

resistance genes in drinking water distribution systems. Horizontal gene transfer (HGT) 

mechanisms move resistance genes from resistant to susceptible populations on mobile genetic 

elements like integrons (Mazel 2006; Gillings et al. 2008; Stalder et al. 2012; Jechalke et al. 

2013). HGT spreads genetic elements and their genes among dissimilar groups of bacteria 

(Gaze et al. 2011), rapidly transferring antibiotic and disinfectant resistance genes (Boucher et 

al. 2007; Stokes and Gillings 2011; Mokracka et al. 2012). Integrons have a recombination 

system, which captures genes and serves as a reservoir of resistance genes (Stokes and Hall 

1989; Demarre et al. 2007; Xu et al. 2011). The transfer of multiple genes on integrons via 

HGT intensifies the problem of resistance in bacterial communities, as it can link resistance 



traits between environmental bacteria and human pathogens in drinking water systems (Ribeiro 

et al. 2014).  

Among multidrug resistance bacteria, class 1 integrons are most common (Shearer and 

Summers 2009), and they are related to the presence of resistance to quaternary ammonium 

compounds (QACs), qacEǻ1 genes and sulphonamide resistance sul1 determinants (Kucken et 

al. 2000). Almost half of the class 1 integrons contain a qac resistance genes cassette (Gillings 

et al. 2009), and the prevalence of class 1 integrons in bacteria having previous exposure to 

QACs is greater than those without previous exposure (Gaze et al. 2005). Moreover, bacteria 

that possess or acquired plasmids, transposons or integrons, have greater QACs resistance than 

those which do not have any of these genetic elements (Bjorland et al. 2003). Bacteria often 

show cross resistance for QACs and antibiotics (Morente et al. 2013), including the use of 

efflux-pump systems to generate resistance to unrelated broad-range antimicrobials (Buffet-

Bataillon et al. 2012). Enzyme based mechanisms of antibiotic resistance is also found in 

bacteria. In the presence of antibiotics, bacteria may acquire genes encoding enzymes which 

can destroy the antibiotic before reaching the target, resulting in the development of resistant in 

bacteria (Tenover, 2006). 

This study aimed to determine the prevalence of bacteria and resistance genes in drinking 

water. Assays included genes responsible for resistance to a wide variety of quaternary 

ammonium compounds (qac genes) and sulphonamide antibiotics (sul1 and sul2 genes), as 

these genes commonly co-occur. Mobile genetic integrons were detected via their integrase 

gene intI1 and intI2. The co-occurrence of sul and qac genes in bacteria from the water 

distribution system was also examined.  

2 Materials and Methods 

2.1 Sampling and Processing 
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Tap-water samples were collected from residences in Glasgow in sterile screw capped bottles, 

and were processed within 2-4 hours of collection. One hundred millilitres water samples were 

vacuum-filtered through 0.22 µm pore size cellulose nitrate gridded membranes (Millipore, 

UK), which were then aseptically placed on Standard Plate Count Agar APHA (Oxoid, UK). 

The plates were incubated for 48 hours at 37 ± 2 C. Selected bacterial isolates from the 

resultant growth were streaked on Nutrient Agar (Oxoid, UK) plates to isolate colonies; 4-5 

colonies of each strain were preserved in glycerol using a Bacterial Beads Preservation Kit 

(Cryo vials TS/71-MX, Technical Service Consultants Ltd., UK) and stored at -80 °C.  

2.2 DNA Extraction and PCR Amplification 

DNA of the bacterial isolates were thermally extracted by mixing strains with 100 µL of PBS 

(pH 7.4) and undergoing a series of freeze thaw cycles at -80 C and 70 C with continuous 

shaking between each cycle. The contents were centrifuged at 10,000 rpm for 5 minutes at the 

end of the fourth thermal cycle, and DNA from the supernatant was stored at -80 C.  

PCR reactions were performed with a Bio-Rad iQ5 Real-Time PCR Detection System for 

the presence of 16S-rRNA, intI1, intI2, sul1, sul2 and qac genes using previously described 

primers (Table 1; Pei et al. 2006; Luo et al. 2010; Caporaso et al. 2011; Jechalke et al. 2013). 

Twenty microliter PCR reactions consisted of 10 µL of MegaMix-Blue-PCR Mastermix with 

dye (Microzone Limited, UK), 1 µL of each primer (500 ȘM final concentration; Sigma-

Aldrich Life Science, UK), 6 µL of nuclease-free water, and 3 µL of DNA sample. Each PCR 

run consisted of initial denaturation at 95 °C for 3 minutes; this was followed by 40 cycles of 

denaturation at 95 °C for 30 seconds, annealing for 30 seconds at annealing temperature (Table 

1), extension at 72 °C for 30 seconds, and then a final extension at 72 °C for 10 minutes. PCR 

products were further verified with 2 % agarose gel in 1x Tris Acetate-EDTA buffer; the size of 



amplified products was determined against a 50-bp incrementing DNA ladder (Fisher 

BioReagent, UK).  

2.3 DNA Purification and Sequencing 

PCR products from 16S-rRNA gene amplification were purified using the QIAquick PCR 

Purification Kit (Qiagen, UK) according to the manufacturer's instructions. Purified and 

cleaned amplicon concentration was determined by the EPOCH™ Microplate 

spectrophotometer system (BioTek, UK). Amplicon was mixed with 5 µM forward primer 

solution used in PCR in a 1:1 ratio in a total volume of 10 µL and sent to LightRun Sequencing 

Service (GACT Biotech Ltd, London, UK) for sequencing. Bacteria were identified by 

comparing the sequences using the BLAST program through the National Centre for 

Biotechnology Information (NCBI).  

3 Results 

3.1 Identification of Bacteria by16S-rRNA Sequencing: Bacterial Community Structure 

Bacteria were isolated from tap water by a membrane filtration method (n=148) and 87 

colonies were identified up to genus level by sequencing the V4 region of 16S-ribosomal RNA 

gene. The water distribution system harboured three phyla of bacteria: Proteobacteria, 

Actinobacteria and Firmicutes. Among them, 54 (62.1 %) belonged to the phylum 

Proteobacteria. Sub grouping of this phylum indicated the presence of 10 alpha-proteobacteria 

(11.5 %), 38 beta-proteobacteria (43.7 %), 5 gamma-proteobacteria (5.7 %) and 1 epsilon-

proteobacterium (1.2 %). Firmicutes were the second largest phyla found in drinking water and 

18 (20.7 %) bacteria belonged to this group, while 15 (17.2 %) bacteria were from 

Actinobacteria.  
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The presence of both Gram-negative and Gram-positive bacteria was confirmed in the tap 

water; among them some of the bacteria can be pathogenic. Species of Bacillus, Paenibacillus, 

Brevibacillus, Kocuria, Staphylococcus, Arthrobacter, Comamonas, Acidovorax, Blastomonas, 

Variovorax, Escherichia and pathogenic Burkholderia were found in the water distribution 

system.  

3.2 Presence of Antibiotic Resistance Genes 

Detection of the sul1 and sul2 genes specific for sulfonamide resistance was performed on 148 

isolates and these genes were detected in 12 (8.1 %) isolates, thus confirming the presence of 

antibiotic resistant bacteria in the water distribution system; none contained both genes. Sul1 

genes were detected in 8 (5.4 %) bacteria, while sul2 genes were present in 4 (2.7 %) isolates 

(Table 2). In two (1.4 %) isolates, these genes were also positive for integrons, while in 10 

(6.8%) isolates they were found singly without integrase genes indicating that sul genes did not 

always correspond to intI genes as expected. This suggests that the sul genes in these bacteria 

might either be present on chromosome, or associated with other genetic elements (Gundogdu 

et al. 2011) other than intI genes. The distribution of bacteria containing antibiotic resistance 

genes (ARGs) was widespread among organisms including Bacillus, Cupriavidus, Variovorax, 

Kocuria, Ralstonia, Dermacoccus, Micrococcus and Staphylococcus species from the samples.  

3.3 Presence of Disinfectant Resistance Genes  

Disinfectant resistance genes qac were not found in any of the isolates. Qac genes associated 

with class 1 integrons have a high occurrence rate in the environment both in Gram-positive 

and Gram-negative bacteria (Jaglic and Cervinkova 2012); in this study, the presence of qac 

genes was not detected. 



3.4 Presence of Transferable Markers 

PCR amplification analyses indicated that class-1 integrons existed in eight bacteria (9.2 %), 

while intI2 genes were not detected in any isolate. In this study, Dermacoccus sp. had both sul1 

and intI1 genes, while Micrococcus sp. had sul2 and intI1 genes simultaneously. Presence of 

intI1 genes confirms the presence of transferable genetic element integrons in the bacteria of 

the water supply system which could involve in the dispersion of antibiotic and disinfectant 

resistance genes in the environment. 

4 Discussion 

The presence of antibiotic resistant bacteria and their genes in water is a major public health 

concern and a global challenge (Pruden et al. 2012; Pruden et al. 2013). They are a major 

contributing factor in water pollution, found in natural water bodies (Ahammad et al. 2014), 

treated drinking water (Pruden et al. 2006), and drinking water distribution systems (Xi et al. 

2009), can cause infectious diseases (Pruden et al. 2012), and are difficult to treat (Levy 2002). 

Currently, waterborne diseases are not only related to the presence of faecal bacteria, but also 

the occurrence of opportunistic pathogens in water systems (Wang et al. 2013). Around 30 

different bacterial genera have been isolated from drinking water in different studies including 

genera of Pseudomonas, Klebsiella, Enterobacter, Escherichia and Proteus (Norton et al. 2000; 

Allen et al. 2004; Gallego et al. 2005, Chiao et al, 2014). In developed countries, outbreaks of 

waterborne infections due to the drinking water have been reported (Kilvington et al. 2004; 

Brunkard et al. 2011). Antibiotic resistant infections are also not uncommon in these countries. 

In the USA, two million people suffered from antibiotic resistant infections every year and 

among them 23,000 died (CDC 2013). Drinking water distribution systems host a variety of 

microorganisms (Simoes et al. 2010), and bacteria having antibiotic resistance can find their 

way into drinking water in these systems. From drinking water, they can colonize the 
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gastrointestinal tract and serve as a potential health risk for the population, especially immune-

compromise individuals (Lee et al. 2010).  

Isolation of bacteria by membrane filtration demonstrates the presence of viable organisms, 

so it is a good indicator of the presence of living bacteria in the water environment, which can 

be actively involved in gene transfer among bacteria and spread of disease in humans. 16S-

rRNA gene information is generally used for the identification of bacteria from different 

environments (Chakravorty et al. 2007). While a useful housekeeping genetic marker to 

classify bacteria, 1-14 % of organisms remain unidentified as it has low phylogenetic power at 

species level and cannot discriminate some genera properly (Drancourt et al. 2000; Woo et al. 

2003; Mignard and Flandrois 2006; Janda and Abbott 2007). In this study, we identified 87 % 

of bacteria from the tap water, while 13 % of bacteria were not characterized as no significant 

similarity was found. These bacteria belong to 22 genera (Table 2), and also included 

Burkholderia, some species of which are waterborne pathogens and may cause melioidosis in 

humans (Howard and Inglis 2003). The isolation and identification of multiple types of bacteria 

at the point of use indicates that the distribution network or plumbing systems might be playing 

some role in the existence of these bacteria, and the ecology of the system could be a 

contributing factor in their incidence (Hong et al. 2010). 

A well-recognized factor which could contribute to the existence of antibiotic resistance 

bacteria at the consumer end is the presence of biofilms in the distribution system or plumbing 

system of the buildings from where water samples have been taken. Prevalence of antibiotic 

resistant bacteria in a water supply system, even in the presence of disinfectant, could be 

exacerbated by aging infrastructure, in which biofilms have formed on surfaces (Abe et al. 

2012). The multiple layers of microorganisms in these biofilms decrease the residual 

disinfectant levels to the inner layers; further, bacteria in these layers could develop and 

transfer resistance traits against antimicrobials to other susceptible populations present in these 

biofilms (Molin and Tolker-Nielsen 2003; Bridier et al. 2011). Water storage in tanks and 



cisterns also causes a decrease in the amount of residual disinfectant as water retention time 

increases, thus allowing bacteria to grow in water. Disinfection itself could concentrate the 

antibiotic resistant bacteria and their genes in drinking water, as was found in the work of Shi et 

al. (2013), where chlorination caused the enrichment of tet, amp and erm genes.  

The emergence of antibiotic resistance in the environment is not only due to physiological 

factors, but also depends on genetic factors like horizontal gene transfer (HGT) rate (Andersson 

and Hughes 2010). Co-selection of two different antibiotic resistance genes occurs through 

HGT due to the genetic linkage of these genes. For example, sulfonamide resistance genes are 

plasmid borne and often linked with other antibiotic resistance genes. It has also been found 

that sul and intI genes co-exist in water, which might be due to the presence of sul1 genes on 

the class 1 integrons (Chen et al., 2015b). This contributes to the reason that sulphonamide 

resistance has not declined even when the use of the antibiotics has been reduced (Enne et al. 

2004). 

Quaternary ammonium compounds resistant genes are also present on mobile genetic 

elements, such as class 1 integrons (Chapman 2003). Bacterial strains, which acquire genetic 

units like plasmids, transposons or integrons, show a higher resistance to QACs (Bjorland et al. 

2003). The selective pressure by quaternary ammonium compounds (Stalder et al. 2012) 

disperses qac genes and antibiotic resistance genes associated with the integrons (Paulsen et al. 

1993; Paulsen et al. 1996; Jeong et al. 2009). This indicates that cross resistance for QACs and 

antibiotics is possible (Morente et al. 2013). Other mechanisms like a multidrug efflux pump 

and modification of the cell wall also induce resistance in bacteria (Jaglic et al. 2012), which 

allow them to survive in the presence of disinfectant. This could be a reason that in the current 

study, qac genes were not detected in any of the bacteria despite the fact that intI1 genes were 

present with antibiotic resistance genes. This suggests that in the absence of disinfectant 

resistant genes, other mechanisms of resistance might help bacteria persist in the water 

distribution system. 
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5 Conclusions 

Isolation of antibiotic resistant bacteria from drinking water demonstrates a need for greater 

awareness of ecological interactions in drinking water and increased monitoring of distribution 

systems and plumbing. Presence of those genera, some species of which could cause human 

diseases, indicates that water quality could not be guaranteed at the consumer end, and future 

studies should focus on treatment considerations at point of use to guarantee safety. 
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Table 1. PCR Primers for targeting different genes 

 

Primer Sequence (5-3) PCR annealing 

temperature (°C) 

Amplicon 

size 
Reference 

V4-16S-515F TGTGCCAGCMGCCGCGGTAA 
50 312 (Caporaso et al. 2011) 

V4-16S-806R GGCTACHVGGGTWTCTAAT 
qacEaIIF CGCATTTTATTTTCTTTCTCTGGTT 

60 Not detected (Jechalke et al. 2013) 
qacEaIIR CCCGACCAGACTGCATAAGC 
int1-F GGCTTCGTGATGCCTGCTT 

57 148 (Luo et al. 2010; Chen et al. 2015a) 
int1-R CATTCCTGGCCGTGGTTCT 
int2-F GTTATTTTATTGCTGGGATTAGGC 

56 166 (Luo et al. 2010; Chen et al. 2015a) 
int2-R TTTTACGCTGCTGTATGGTGC 
sul1-F CGCACCGGAAACATCGCTGCAC 

56 163 (Pei et al. 2006; Chen et al., 2015a) 
sul1-R TGAAGTTCCGCCGCAAGGCTCG 
sul2-F TCCGGTGGAGGCCGGTATCTGG 

60.8 191 (Pei et al., 2006; Chen et al., 2015a) 
sul2-R CGGGAATGCCATCTGCCTTGAG 
F, forward; R, reverse. 
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Table 2. Detection of intI1, intI2, sul1, sul2 and qac genes in bacteria isolated from the drinking water distribution system. 

 
N# Phylum Genus Genes Isolate identification 

intI1 intI2 sul1 sul2 qac 

1 Actinobacteria Arthrobacter - - - - - DW(518) 
1 Actinobacteria Arthrobacter + - - - - DW(509) 
2 Actinobacteria Dermacoccus - - - - - DW(597, 603) 
1 Actinobacteria Dermacoccus - - + - - DW(608) 
1 Actinobacteria Dermacoccus + - + - - DW(607) 
1 Actinobacteria Dietzia  - - - - - DW(625) 
1 Actinobacteria Janibacter  - - - - - DW(644) 
1  Actinobacteria Kocuria - - - - - DW(565) 
1 Actinobacteria Kocuria - - + - - DW(620) 
1  Actinobacteria Kocuria + - - - - DW(513) 
2 Actinobacteria Micrococcus - - - - - DW(505, 637) 
1 Actinobacteria Micrococcus + - - - - DW(638) 
1 Actinobacteria Micrococcus + - - + - DW(512) 
9 Alphaproteobacteria Blastomonas - - - - - DW(525, 526, 547, 551, 553, 554, 556, 559, 

599) 
1  Alphaproteobacteria Sphingomonas - - - - - DW(576) 
8 Betaproteobacteria Acidovorax - - - - - DW(516, 521, 537, 539, 540, 541, 544, 569) 
5 Betaproteobacteria Burkholderia - - - - - DW(530, 615, 617, 626, 643) 
1 Betaproteobacteria Comamonas - - - - - DW(503) 
10 Betaproteobacteria Cupriavidus - - - - - DW(501, 502, 504, 511, 522, 570, 578, 580, 

587, 591) 
1 Betaproteobacteria Cupriavidus - - - + - DW(515) 
2 Betaproteobacteria Cupriavidus - - + - - DW(610, 622) 
1 Betaproteobacteria Cupriavidus + - - - - DW(604) 
5 Betaproteobacteria Ralstonia - - - - - DW(609, 613, 616, 618, 619) 
1 Betaproteobacteria Ralstonia - - - + - DW(614) 
2 Betaproteobacteria Variovorax - - - - - DW(546, 549) 
2 Betaproteobacteria Variovorax + - - - - DW(557, 600) 
1 Epsilonproteobacteria Not identified      DW(533) 
5 Firmicutes Bacillus - - - - - DW(514, 527, 529, 531, 640) 
1 Firmicutes Bacillus - - - + - DW(507) 
1 Firmicutes Bacillus - - + - - DW(532) 
1 Firmicutes Brevibacillus - - - - - DW(535) 
5 Firmicutes Paenibacillus - - - - - DW(552, 623, 634, 635, 641) 
1 Firmicutes Paenibacillus - - + - - DW(536) 
3 Firmicutes Staphylococcus - - - - - DW(538, 542, 632) 
1  Firmicutes Staphylococcus - - + - - DW(631) 
2 Gammaproteobacteria Enhydrobacter - - - - - DW(506, 508) 
2 Gammaproteobacteria Escherichia - - - - - DW(560, 611) 
1 Gammaproteobacteria Pantoea - - - - - DW(595) 
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