287 research outputs found

    Submerged entry nozzle clogging during continuous casting of Al-killed steel

    Get PDF
    Nozzle clogging is a common problem in the production of continuously cast Al-killed steels. Clogging occurs when there are solid inclusions in molten steel at casting temperatures. SENs (Submerged entry nozzles) from continuous casting of Al-killed low alloy steel grades with increased content of sulfur (0,020 to 0,035 % S) were examined. The examinations revealed that the deposits are mainly alumina based, with spinel and sulfur inclusions and some entrapped steel melt. It was concluded that the process of clogging begins when the steel melt infiltrates the refractory and removes the protective zirconia surface, thus allowing the adhesion of fine solid aluminates, which form the deposits

    Terahertz Radiation Detection by Field Effect Transistor in Magnetic Field

    Full text link
    We report on terahertz radiation detection with InGaAs/InAlAs Field Effect Transistors in quantizing magnetic field. The photovoltaic detection signal is investigated at 4.2 K as a function of the gate voltage and magnetic field. Oscillations analogous to the Shubnikov-de Haas oscillations, as well as their strong enhancement at the cyclotron resonance, are observed. The results are quantitatively described by a recent theory, showing that the detection is due to rectification of the terahertz radiation by plasma waves related nonlinearities in the gated part of the channel.Comment: 4 pages, 3 figure

    Evaluation of time-dependent correlators after a local quench in iPEPS: hole motion in the t-J model

    Get PDF
    Infinite projected entangled pair states (iPEPS) provide a convenient variational description of infinite, translationally-invariant two-dimensional quantum states. However, the simulation of local excitations is not directly possible due to the translationally-invariant ansatz. Furthermore, as iPEPS are either identical or orthogonal, expectation values between different states as required during the evaluation of non-equal-time correlators are ill-defined. Here, we show that by introducing auxiliary states on each site, it becomes possible to simulate both local excitations and evaluate non-equal-time correlators in an iPEPS setting under real-time evolution. We showcase the method by simulating the t-J model after a single hole has been placed in the half-filled antiferromagnetic background and evaluating both return probabilities and spin correlation functions, as accessible in quantum gas microscopes.Comment: 12 pages, 5 figures, minor revision requested by SciPost Physic

    Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications

    Full text link
    Resonant frequencies of the two-dimensional plasma in FETs increase with the reduction of the channel dimensions and can reach the THz range for sub-micron gate lengths. Nonlinear properties of the electron plasma in the transistor channel can be used for the detection and mixing of THz frequencies. At cryogenic temperatures resonant and gate voltage tunable detection related to plasma waves resonances, is observed. At room temperature, when plasma oscillations are overdamped, the FET can operate as an efficient broadband THz detector. We present the main theoretical and experimental results on THz detection by FETs in the context of their possible application for THz imaging.Comment: 22 pages, 12 figures, review pape

    Nonlocal resistance and its fluctuations in microstructures of band-inverted HgTe/(Hg,Cd)Te quantum wells

    Full text link
    We investigate experimentally transport in gated microsctructures containing a band-inverted HgTe/Hg_{0.3}Cd_{0.7}Te quantum well. Measurements of nonlocal resistances using many contacts prove that in the depletion regime the current is carried by the edge channels, as expected for a two-dimensional topological insulator. However, high and non-quantized values of channel resistances show that the topological protection length (i.e. the distance on which the carriers in helical edge channels propagate without backscattering) is much shorter than the channel length, which is ~100 micrometers. The weak temperature dependence of the resistance and the presence of temperature dependent reproducible quasi-periodic resistance fluctuations can be qualitatively explained by the presence of charge puddles in the well, to which the electrons from the edge channels are tunnel-coupled.Comment: 8 pages, 4 figures, published versio

    Atomistic defect states as quantum emitters in monolayer MoS2_2

    Full text link
    Quantum light sources in solid-state systems are of major interest as a basic ingredient for integrated quantum device technologies. The ability to tailor quantum emission through deterministic defect engineering is of growing importance for realizing scalable quantum architectures. However, a major difficulty is that defects need to be positioned site-selectively within the solid. Here, we overcome this challenge by controllably irradiating single-layer MoS2_{2} using a sub-nm focused helium ion beam to deterministically create defects. Subsequent encapsulation of the ion bombarded MoS2_{2} flake with high-quality hBN reveals spectrally narrow emission lines that produce photons at optical wavelengths in an energy window of one to two hundred meV below the neutral 2D exciton of MoS2_{2}. Based on ab-initio calculations we interpret these emission lines as stemming from the recombination of highly localized electron-hole complexes at defect states generated by the helium ion bombardment. Our approach to deterministically write optically active defect states in a single transition metal dichalcogenide layer provides a platform for realizing exotic many-body systems, including coupled single-photon sources and exotic Hubbard systems.Comment: Main: 9 pages, 3 figures + SI: 19 pages, 10 figure

    Temperature-induced topological phase transition in HgTe quantum wells

    Full text link
    We report a direct observation of temperature-induced topological phase transition between trivial and topological insulator in HgTe quantum well. By using a gated Hall bar device, we measure and represent Landau levels in fan charts at different temperatures and we follow the temperature evolution of a peculiar pair of "zero-mode" Landau levels, which split from the edge of electron-like and hole-like subbands. Their crossing at critical magnetic field BcB_c is a characteristic of inverted band structure in the quantum well. By measuring the temperature dependence of BcB_c, we directly extract the critical temperature TcT_c, at which the bulk band-gap vanishes and the topological phase transition occurs. Above this critical temperature, the opening of a trivial gap is clearly observed.Comment: 5 pages + Supplemental Materials; Phys. Rev. Lett. (accepted

    Terahertz Generation and Detection by Plasma Waves in Nanometer Gate High Electron Mobility Transistors

    Get PDF
    The high electron mobility transistors can act as a resonator cavity for the plasma waves that can reach THz frequencies for a nanometer size devices. As was predicted by Dyakonov and Shur in 1993, the steady state of the current flow in a gated 2D electron gas can become unstable leading to the emission of an electromagnetic radiation at the plasma wave frequencies. The theory predicted also that the plasma waves can be used for resonant detection of THz electromagnetic radiation. In the present paper we review our recent experiments on THz emission and detection performed on high electron mobility transistors based on different semiconductor structures: InGaAs/GaAlAs, GaAs/GaAlAs, and Si

    Room Temperature Coherent and Voltage Tunable Terahertz Emission from Nanometer-Sized Field Effect Transistors

    Full text link
    We report on reflective electro-optic sampling measurements of TeraHertz emission from nanometer-gate-length InGaAs-based high electron mobility transistors. The room temperature coherent gate-voltage tunable emission is demonstrated. We establish that the physical mechanism of the coherent TeraHertz emission is related to the plasma waves driven by simultaneous current and optical excitation. A significant shift of the plasma frequency and the narrowing of the emission with increasing channel's current are observed and explained as due to the increase of the carriers density and drift velocity.Comment: 3 figure
    corecore