381 research outputs found

    Motion Artifact Reduction in Breast Dynamic Infrared Imaging

    Get PDF
    Dynamic infrared imaging is a promising technique in breast oncology. In this study a QWIP infrared camera is used to acquire a sequence of consecutive thermal images of the patient's breast for 10 s. Information on the local blood perfusion is obtained from the spectral analysis of the time series at each image pixel. Due to respiratory and motion artifacts, the direct comparison of the temperature values that a pixel assumes along the sequence becomes difficult. In fact, the small temperature changes due to blood perfusion, of the order of 10-50 mK, which constitute the signal of interest in the time domain, are superimposed onto large temperature fluctuations due to the subject's motion, which represent noise. To improve the time series signal-to-noise ratio, and, as a consequence, enhance the specificity and sensitivity of the dynamic infrared examination, it is important to realign the thermal images of the acquisition sequence thus reducing motion artifacts. In a previous study we demonstrated that a registration algorithm based on fiducial points is suitable to both clinical applications and research, when associated with a proper set of skin markers. In this paper, we quantitatively evaluate the performance of different marker sets by means of a model that allows for estimating the signal-to-noise ratio increment due to registration, and we conclude that a 12-marker set is a good compromise between motion artifact reduction and the time required to prepare the patien

    Evaluation of time-series registration methods in dynamic area telethermometry for breast cancer detection

    Get PDF
    Automated motion reduction in 3D dynamic infrared imaging is on demand in many applications. Few methods for registering time-series dynamic infrared frames have been proposed. Almost all such methods are feature based algorithms requiring manual intervention. We apply different automated registration methods based on spatial displacement to 11 datasets of Breast Dynamic Infrared Imaging (DIRI) and evaluate the results in terms of both the image similarity and anatomical consistency of the transformation. The aim is to optimize the registration strategy for breast DIRI in order to improve the spectral analysis of temperature modulation; thus facilitating the acquisition procedure in a Dynamic Area Telethermometry framework. The results show that symmetric diffeomorphic demons registration outperforms both warped frames similarity and smoothness of deformation fields; hence proving effective for time-series dynamic infrared registratio

    Reduction of gait abnormalities in type 2 diabetic patients due to physical activity: a quantitative evaluation based on statistical gait analysis

    Get PDF
    The aim of this study is the objective assessment of gait abnormalities in diabetic patients and the quantification of the benefits of physical activity in improving the gait quality. Patients were equipped with foot-switches and knee goniometers and were asked to walk at their natural pace for 2.5 minutes. A statistical gait analysis was performed extracting from hundreds of strides the ‘atypical' cycles, i.e. the cycles which do not show the usual sequence of gait phases (heel contact, flat foot contact, push off, swing), the duration of the heel contact phase and the knee kinematics in the sagittal plane. A sample population of 27 non-neuropathic type 2 diabetic patients was examined before and after attending a light-intensity physical activity program that lasted four months. A fuzzy classifier was used to assign a score to the gait abnormalities of each patient in baseline conditions and after the program completion. More than 50% of the subjects reduced significantly their gait abnormalities and, on the average, the most frequent improvements were the reduction of atypical cycles and heel contact duration. Furthermore we found that, in basal conditions, the left side is more affected by gait abnormalities than the right one (P < 0.003

    Self-reported gait unsteadiness in mildly impaired neurological patients: an objective assessment through statistical gait analysis

    Get PDF
    Background Self-reported gait unsteadiness is often a problem in neurological patients without any clinical evidence of ataxia, because it leads to reduced activity and limitations in function. However, in the literature there are only a few papers that address this disorder. The aim of this study is to identify objectively subclinical abnormal gait strategies in these patients. Methods Eleven patients affected by self-reported unsteadiness during gait (4 TBI and 7 MS) and ten healthy subjects underwent gait analysis while walking back and forth on a 15-m long corridor. Time-distance parameters, ankle sagittal motion, and muscular activity during gait were acquired by a wearable gait analysis system (Step32, DemItalia, Italy) on a high number of successive strides in the same walk and statistically processed. Both self-selected gait speed and high speed were tested under relatively unconstrained conditions. Non-parametric statistical analysis (Mann-Whitney, Wilcoxon tests) was carried out on the means of the data of the two examined groups. Results The main findings, with data adjusted for velocity of progression, show that increased double support and reduced velocity of progression are the main parameters to discriminate patients with self-reported unsteadiness from healthy controls. Muscular intervals of activation showed a significant increase in the activity duration of the Rectus Femoris and Tibialis Anterior in patients with respect to the control group at high speed. Conclusions Patients with a subjective sensation of instability, not clinically documented, walk with altered strategies, especially at high gait speed. This is thought to depend on the mechanisms of postural control and coordination. The gait anomalies detected might explain the symptoms reported by the patients and allow for a more focused treatment design. The wearable gait analysis system used for long distance statistical walking assessment was able to detect subtle differences in functional performance monitoring, otherwise not detectable by common clinical examination

    Evaluation of muscle synergies stability in human locomotion: A comparison between normal and fast walking speed

    Get PDF
    Motor control strategies can be described by muscle synergies, a model of functional muscle recruitment to perform a movement. However, stability of muscle synergies during locomotion has not yet been investigated. The objective of this work was the evaluation of the stability of muscle synergies while walking at normal (NS) and fast (FS) speed. Each walking condition was tested during a prolonged session lasting 5 minutes on five healthy subjects. After data processing with statistical gait analysis, 168±29 valid strides in NS and 181±48 in FS were obtained. They were aggregated in subgroups, with 10 strides each. Muscle synergies were extracted for all subgroups with non-negative matrix factorization. On the average, 6 synergies were suitable to reconstruct the original electromyographic signal. They were functionally correlated to the activities of propulsion, trunk stability, limb deceleration at the end of swing, forefoot control, and limb stiffening for initial contact stability. To compare muscle synergy stability over time, a similarity measurement was carried out. This showed that from 1 to 3 synergies were unstable in NS. As for the FS condition, only one subject showed unstable synergies, corresponding to the hip stabilizing synergy

    Circular components in center of pressure signals

    Get PDF
    Static posturography provides an objective assessment of postural control by characterizing the body sway during upright standing. The Center-of-Pressure (CoP) signal is recorded by a force platform and it is analyzed by means of many different models and techniques. Most of the parameters calculated according to these different approaches are affected by relevant intra- and inter-subject variability and/or do not have a clear physiological interpretation. Traditional approaches decompose the CoP signal into antero-posterior and medio-lateral time series, corresponding to ankle plantar/dorsiflexion and hip adduction/abduction, respectively. In this study we hypothesized that CoP signals show inherent rotational characteristics. To verify our hypothesis we applied the rotary spectra analysis to the 2-dimensional CoP signal to decompose it into clockwise and counter-clockwise rotational components. We demonstrated the presence of rotational components in the CoP signal of healthy subjects, providing a reference data set of the spectral characteristics of these component
    corecore