65 research outputs found

    The Effect of Coherent Structures on Stochastic Acceleration in MHD Turbulence

    Full text link
    We investigate the influence of coherent structures on particle acceleration in the strongly turbulent solar corona. By randomizing the Fourier phases of a pseudo-spectral simulation of isotropic MHD turbulence (Re ∼300\sim 300), and tracing collisionless test protons in both the exact-MHD and phase-randomized fields, it is found that the phase correlations enhance the acceleration efficiency during the first adiabatic stage of the acceleration process. The underlying physical mechanism is identified as the dynamical MHD alignment of the magnetic field with the electric current, which favours parallel (resistive) electric fields responsible for initial injection. Conversely, the alignment of the magnetic field with the bulk velocity weakens the acceleration by convective electric fields - \bfu \times \bfb at a non-adiabatic stage of the acceleration process. We point out that non-physical parallel electric fields in random-phase turbulence proxies lead to artificial acceleration, and that the dynamical MHD alignment can be taken into account on the level of the joint two-point function of the magnetic and electric fields, and is therefore amenable to Fokker-Planck descriptions of stochastic acceleration.Comment: accepted for publication in Ap

    Characteristic cohomology of pp-form gauge theories

    Full text link
    The characteristic cohomology Hchark(d)H^k_{char}(d) for an arbitrary set of free pp-form gauge fields is explicitly worked out in all form degrees k<n−1k<n-1, where nn is the spacetime dimension. It is shown that this cohomology is finite-dimensional and completely generated by the forms dual to the field strengths. The gauge invariant characteristic cohomology is also computed. The results are extended to interacting pp-form gauge theories with gauge invariant interactions. Implications for the BRST cohomology are mentioned.Comment: Latex file, no figures, 44 page

    Modulators of Cytoskeletal Reorganization in CA1 Hippocampal Neurons Show Increased Expression in Patients at Mid-Stage Alzheimer's Disease

    Get PDF
    During the progression of Alzheimer's disease (AD), hippocampal neurons undergo cytoskeletal reorganization, resulting in degenerative as well as regenerative changes. As neurofibrillary tangles form and dystrophic neurites appear, sprouting neuronal processes with growth cones emerge. Actin and tubulin are indispensable for normal neurite development and regenerative responses to injury and neurodegenerative stimuli. We have previously shown that actin capping protein beta2 subunit, Capzb2, binds tubulin and, in the presence of tau, affects microtubule polymerization necessary for neurite outgrowth and normal growth cone morphology. Accordingly, Capzb2 silencing in hippocampal neurons resulted in short, dystrophic neurites, seen in neurodegenerative diseases including AD. Here we demonstrate the statistically significant increase in the Capzb2 expression in the postmortem hippocampi in persons at mid-stage, Braak and Braak stage (BB) III-IV, non-familial AD in comparison to controls. The dynamics of Capzb2 expression in progressive AD stages cannot be attributed to reactive astrocytosis. Moreover, the increased expression of Capzb2 mRNA in CA1 pyramidal neurons in AD BB III-IV is accompanied by an increased mRNA expression of brain derived neurotrophic factor (BDNF) receptor tyrosine kinase B (TrkB), mediator of synaptic plasticity in hippocampal neurons. Thus, the up-regulation of Capzb2 and TrkB may reflect cytoskeletal reorganization and/or regenerative response occurring in hippocampal CA1 neurons at a specific stage of AD progression

    Large-eddy simulation of MHD turbulence

    No full text
    info:eu-repo/semantics/publishe

    State-of-the-art of NORM nuclide determination in samples from oil and gas production: Validation of potential standardization methods through an interlaboratory test programme

    No full text
    Gas and oil companies frequently encounter build-up of Naturally Occurring Radioactive Material (NORM) in their production and processing facilities. In the Netherlands NORM is subject to strict national regulations and, consequently, installations have to be screened on a regular basis. The availability of accurate and reliable NORM sampling and analysis techniques is therefore essential, A number of years ago, the ''Nederlandse Aardolie Maatschappij B.V.'' (NAM) actively Initiated an investigation on analysis techniques for NORM samples from gas and oil companies. Within this framework, Shell Research Amsterdam organized a four-stage interlaboratory test programme in which representative samples of increasing complexity were analyzed by a number of Dutch institutes. Whereas a large spread in results was observed in the first stage, results in the last stage deviated less than +/- 10% from the values certified by all independent referee institute, even for complex sludge samples. It was found that in particular the use of different values for the gamma-yields and branching ratios amongst the institutes was responsible for the initial spread
    • …
    corecore