20 research outputs found

    Lipid nanocapsules maintain full integrity after crossing a human intestinal epithelium model

    Get PDF
    Lipid nanocapsules (LNCs) have demonstrated great potential for the oral delivery of drugs having very limited oral bioavailability (BCS class II, III and IV molecules). It has been shown previously that orally-administered LNCs can permeate through mucus, increase drug absorption by the epithelial tissue, and finally, increase drug bioavailability. However, even if transport mechanisms through mucus and the intestinal barrier have already been clarified, the preservation of particle integrity is still not known. The aim of the present work is to study in vitro the fate of LNCs after their transportation across an intestinal epithelium model (Caco-2 cell model). For this, two complementary techniques were employed: Förster Resonance Energy Transfer (FRET) and Nanoparticle Tracking Analysis (NTA). Results showed, after 2 h, the presence of nanoparticles in the basolateral side of the cell layer and a measurable FRET signal. This provides very good evidence for the transcellular intact crossing of the nanocarriers

    Inter-nanocarrier and nanocarrier-to-cell transfer assays demonstrate the risk of an immediate unloading of dye from labeled lipid nanocapsules

    Get PDF
    Release studies constitute a fundamental part of the nanovector characterization. However, it can be difficult to correctly assess the release of lipophilic compounds from lipid nanocarriers using conventional assays. Previously, we proposed a method including an extraction with oil to measure the loading stability of lipophilic dyes in lipid nanocapsules (LNCs). The method indicated a rapid release of Nile Red from LNCs, while the loading of lipophilic carbocyanine dyes remained stable. This method, although interesting for a rapid screening of the fluorescence labeling stability of nanocarriers, is far from what happens in vivo, where lipid acceptor phases are nanostructured. Here, lipophilic dye loading stability has been assessed, by monitoring dye transfer from LNCs toward stable colloidal lipid nanocompartments, i.e. non-loaded LNCs, using new methodology based on size exclusion chromatography (SEC) and Förster Resonance Energy Transfer (FRET). Dye transfer between LNCs and THP-1 cells (as model for circulating cells) has also been studied by FACS. The assays reveal an almost instantaneous transfer of Nile Red between LNCs, from LNCs to THP-1 cells, between THP-1 cells, and a reversal transfer from THP-1 cells to LNCs. On the contrary, there was no detectable transfer of the lipophilic carbocyanine dyes. Dye release was also analyzed using dialyses, which only revealed a very slow release of Nile Red from LNCs, demonstrating the weakness of membrane based assays for investigations of the lipophilic compound loading stability in lipid nanocarriers. These results highlight the importance of using relevant release assays, and the potential risk of an immediate unloading of lipophilic fluorescent dyes from lipid nanocarriers, in the presence of a lipid acceptor nanocompartment. Some misinterpretations of cellular trafficking and in vivo biodistribution of fluorescent nanoparticles should be avoided

    Highly lipophilic fluorescent dyes in nano-emulsions: towards bright non-leaking nano-droplets

    Get PDF
    Dye-loaded lipid nano-droplets present an attractive alternative to inorganic nanoparticles, as they are composed of non-toxic biodegradable materials and are easy to prepare. However, to achieve high fluorescence brightness, the nano-droplets have to be heavily loaded with the dyes avoiding fluorescence self-quenching and release (leakage) of the encapsulated dyes from the nano-droplets in biological media. In the present work, we have designed highly lipophilic fluorescent derivatives of 3-alkoxyflavone (F888) and Nile Red (NR668) that can be encapsulated in the lipophilic core of stable nano-emulsion droplets at exceptionally high concentrations in the oil core, i.e. up to 170 mM and 17 mM, respectively, corresponding to ∼830 and 80 dyes per 40 nm droplet. Despite this high loading, these dyes keep high fluorescence quantum yields and thus, provide high nano-droplet brightness, probably due to their bulky structure preventing self-quenching. Moreover, simultaneous encapsulation of both dyes at high concentrations in single nano-droplets allows the observation of FRET. FRET and fluorescence correlation spectroscopy (FCS) studies showed that NR668 release in the serum-containing medium is very slow, while the reference hydrophobic dye Nile Red leaks immediately. This drastic difference in the leakage profile between NR668 and Nile Red was confirmed by in vitro cellular studies as well as by in vivo angiography imaging on zebrafish models, where the NR668-loaded nano-droplets remained in the blood, while the parent Nile Red leaked rapidly from the droplets distributing all over the animal body. This study suggests new molecular design strategies for obtaining bright nano-droplets without dye leakage and their use as efficient and stable optical contrast agents in vitro and in vivo

    Cationic amphiphilic calixarenes to compact DNA into small nanoparticles for gene delivery

    No full text
    International audienc

    Calixarenes and related macrocycles as gene delivery vehicles

    No full text
    International audienc

    Imaging lipid order changes in endosome membranes of live cells by using a Nile Red-based membrane probe

    No full text
    International audienc
    corecore