5 research outputs found

    Simulation of a research reactor reactivity transient with deterministic and GPU-assisted Monte Carlo reactor kinetics codes

    Get PDF
    Reactor kinetic codes are crucial in safety assessment. Validating spatial and high temporal resolution kinetic solvers without thermal feedback is problematic as measurements seldom involve detailed spatial and fine temporal resolution. Benchmarking of deterministic codes thus often resorts to code-to-code comparison against Monte Carlo codes, which can only recently treat direct time dependence. In this paper, we have attempted to compare results from the GUARDYAN directly time-dependent Monte Carlo code and the SEnTRi transient driver developed for the PARTISN deterministic transport code to low power transient measured at the BME Training Reactor. Code-to-measurement comparisons were successful, despite a major uncertainty in the actual timing of the reactivity insertion and withdrawal originating from the instrumentation of the pneumatic rabbit system. Code-to-code comparisons concluded that time dependence was correctly implemented in both GUARDYAN and SEnTRi; furthermore, a hypothetical scenario was set up involving an instantaneous insertion of a negative reactivity into the BME TR core in order to compare spatially and temporally dependent fluxes. The simulations demonstrated the appearance of higher-order modes, and results showed a relatively good match, although fidelity of the comparison could be further improved by reducing the statistical uncertainty of the results provided by GUARDYAN

    Multiplicity counting using the two- and three point statistics of fission chamber signals – Theory and experimental demonstration

    No full text
    In two earlier papers [1,2] we investigated the possibility of extracting traditional multiplicity count rates from the cumulants of fission chamber signals in current mode. The first three cumulants were derived for up to three detectors. It was shown that if all neutrons emitted from the sample simultaneusly are also detected simultaneously, the multiplicity rates can be retrieved from the cumulants of the detector current, but the method breaks down if the detections of neutrons of common origin take place with a time delay spread wider than the pulse shape. To remedy these shortcomings, in this work we extended the theory to two- and three-point distributions (correlations). It was found that the integrals of suitably chosen two- and three-point moments with respect to the time differences become independent of the probability density of the time delays of detections. With this procedure, the multiplicity rates can be retrieved from the detector currents for arbitrary time delay distributions. To demonstrate the practical applicability of the proposed method, pilot measurements are performed. A description of the experimental setup and some preliminary experimental results are presented in the paper

    Collagen Pathology at the Molecular Level

    No full text
    corecore