9 research outputs found

    The impact of monosomies, trisomies and segmental aneuploidies on chromosomal stability

    Get PDF
    Aneuploidy and chromosomal instability are both commonly found in cancer. Chromosomal instability leads to karyotype heterogeneity in tumors and is associated with therapy resistance, metastasis and poor prognosis. It has been hypothesized that aneuploidy per se is sufficient to drive CIN, however due to limited models and heterogenous results, it has remained controversial which aspects of aneuploidy can drive CIN. In this study we systematically tested the impact of different types of aneuploidies on the induction of CIN. We generated a plethora of isogenic aneuploid clones harboring whole chromosome or segmental aneuploidies in human p53-deficient RPE-1 cells. We observed increased segregation errors in cells harboring trisomies that strongly correlated to the number of gained genes. Strikingly, we found that clones harboring only monosomies do not induce a CIN phenotype. Finally, we found that an initial chromosome breakage event and subsequent fusion can instigate breakage-fusion-bridge cycles. By investigating the impact of monosomies, trisomies and segmental aneuploidies on chromosomal instability we further deciphered the complex relationship between aneuploidy and CIN

    Design and implementation of the international genetics and translational research in transplantation network

    Get PDF

    Monitoring of engraftment and progression of acute lymphoblastic leukemia in individual NOD/SCID mice

    No full text
    Objective. The aim of this study was to develop an animal model for human acute lymphoblastic leukemia (ALL) in which the kinetics and characteristics of leukemia can be sequentially monitored in individual mice. Materials and Methods. NOD/SCID mice were inoculated intravenously with primary ALL. Progression of leukemia was monitored throughout the development of disease by determination of absolute leukemic cell counts (LCC) in peripheral blood. Results. LCC as low as 104 leukemic cells/mL blood could be detected. ALL cells from 5 of 5 patients engrafted, and after identification of the first leukemic cells in peripheral blood, LCC increased exponentially. Leukemic cells showed specificity of homing to spleen and bone marrow, and LCC strongly correlated with the level of leukemic engraftment in these organs throughout disease progression, demonstrating that LCC are representative for overall leukemic burden. Cytogenetic analysis of leukemic cells recovered after six successive in vivo transfers revealed no major karyotypic changes as compared to primary cells, and selection of the dominant clones was observed. This selection process was reflected by an increase in the rate of leukemic progression as compared to the first inoculation, demonstrating the accuracy with which kinetics of leukemic progression can be studied by determination of LCC. Conclusions. This model is suitable for detailed studies of kinetics and characteristics of ALL in vivo, and it may be useful for monitoring effects of novel therapeutic regimens

    The generation of dendritic-like cells with increased allostimulatory function from acute myeloid leukemia cells of various FAB subclasses

    No full text
    To increase the immunogenicity of leukemic cells, attempts were made to generate dendritic-like antigen presenting cells (DC) from AML blasts from 14 patients with AML FAB classifications M0-M5. Leukemic cells were cultured in the presence or absence of various cytokines including GM-CSF, SCF, TNF-α, IL-4, and γ-interferon. After various intervals recovery of viable cells was measured and expression of CD80, CD86, CD40, CD54, CD58, and CD11a was analyzed by flow cytometry. Functionally, DC derived from six AML samples were tested in a mixed lymphocyte response (MLR) using HLA-DR mismatched donor T cells as responder cells. Proliferation (5/14) or increased survival (7/14) of AML cells was observed in the presence of GM-CSF, SCF, and TNF-α. Only in the AML M2, M3, and M4 FAB subtypes proliferation was found. GM-CSF, SCF, and TNF-α induced morphologic changes typical for DC and increased the expression of costimulatory and adhesion molecules. No significant effect of IL-4 or γ-interferon was observed. The day of maximal expression of these molecules varied. In cases with minor upregulation of CD80 or CD86, no further stimulation using CD40-L activation was observed. In the three cases tested, the DC-like cells retained the chromosomal abnormalities present in the original AML cells. In five out of six cases tested an increase in allostimulatory capacity was found at the day of maximal expression of costimulatory and adhesion molecules. In two patients a decrease in stimulatory capacity was found at day 7 compared with day 2 correlating with a decreased expression of these molecules. In conclusion, AML cells can be induced to increase their stimulatory capacity by upregulating costimulatory and adhesion molecules. (C) American Society for Histocompatibility and Immunogenetics, 2000

    Effect of HIPEC according to HRD/BRCAwt genomic profile in stage III ovarian cancer:Results from the phase III OVHIPEC trial

    Get PDF
    The addition of hyperthermic intraperitoneal chemotherapy (HIPEC) with cisplatin to interval cytoreductive surgery improves recurrence-free (RFS) and overall survival (OS) in patients with stage III ovarian cancer. Homologous recombination deficient (HRD) ovarian tumors are usually more platinum sensitive. Since hyperthermia impairs BRCA1/2 protein function, we hypothesized that HRD tumors respond best to treatment with HIPEC. We analyzed the effect of HIPEC in patients in the OVHIPEC trial, stratified by HRD status and BRCAm status. Clinical data and tissue samples were collected from patients included in the randomized, phase III OVHIPEC-1 trial. DNA copy number variation (CNV) profiles, HRD-related pathogenic mutations and BRCA1 promotor hypermethylation were determined. CNV-profiles were categorized as HRD or non-HRD, based on a previously validated algorithm-based BRCA1-like classifier. Hazard ratios (HR) and corresponding 99% confidence intervals (CI) for the effect of RFS and OS of HIPEC in the BRCAm, the HRD/BRCAwt and the non-HRD group were estimated using Cox proportional hazard models. Tumor DNA was available from 200/245 (82%) patients. Seventeen (9%) tumors carried a pathogenic mutation in BRCA1 and 14 (7%) in BRCA2. Ninety-one (46%) tumors classified as BRCA1-like. The effect of HIPEC on RFS and OS was absent in BRCAm tumors (HR 1.25; 99%CI 0.48-3.29), and most present in HRD/BRCAwt (HR 0.44; 99%CI 0.21-0.91), and non-HRD/BRCAwt tumors (HR 0.82; 99%CI 0.48-1.42), interaction P value: 0.024. Patients with HRD tumors without pathogenic BRCA1/2 mutation appear to benefit most from treatment with HIPEC, while benefit in patients with BRCA1/2 pathogenic mutations and patients without HRD seems less evident.</p

    Effect of HIPEC according to HRD/BRCAwt genomic profile in stage III ovarian cancer:Results from the phase III OVHIPEC trial

    Get PDF
    The addition of hyperthermic intraperitoneal chemotherapy (HIPEC) with cisplatin to interval cytoreductive surgery improves recurrence-free (RFS) and overall survival (OS) in patients with stage III ovarian cancer. Homologous recombination deficient (HRD) ovarian tumors are usually more platinum sensitive. Since hyperthermia impairs BRCA1/2 protein function, we hypothesized that HRD tumors respond best to treatment with HIPEC. We analyzed the effect of HIPEC in patients in the OVHIPEC trial, stratified by HRD status and BRCAm status. Clinical data and tissue samples were collected from patients included in the randomized, phase III OVHIPEC-1 trial. DNA copy number variation (CNV) profiles, HRD-related pathogenic mutations and BRCA1 promotor hypermethylation were determined. CNV-profiles were categorized as HRD or non-HRD, based on a previously validated algorithm-based BRCA1-like classifier. Hazard ratios (HR) and corresponding 99% confidence intervals (CI) for the effect of RFS and OS of HIPEC in the BRCAm, the HRD/BRCAwt and the non-HRD group were estimated using Cox proportional hazard models. Tumor DNA was available from 200/245 (82%) patients. Seventeen (9%) tumors carried a pathogenic mutation in BRCA1 and 14 (7%) in BRCA2. Ninety-one (46%) tumors classified as BRCA1-like. The effect of HIPEC on RFS and OS was absent in BRCAm tumors (HR 1.25; 99%CI 0.48-3.29), and most present in HRD/BRCAwt (HR 0.44; 99%CI 0.21-0.91), and non-HRD/BRCAwt tumors (HR 0.82; 99%CI 0.48-1.42), interaction P value: 0.024. Patients with HRD tumors without pathogenic BRCA1/2 mutation appear to benefit most from treatment with HIPEC, while benefit in patients with BRCA1/2 pathogenic mutations and patients without HRD seems less evident

    BRAF(V600E) Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts

    No full text
    The therapeutic landscape of melanoma is improving rapidly. Targeted inhibitors show promising results, but drug resistance often limits durable clinical responses. There is a need for in vivo systems that allow for mechanistic drug resistance studies and (combinatorial) treatment optimization. Therefore, we established a large collection of patient-derived xenografts (PDXs), derived from BRAF(V600E), NRAS(Q61), or BRAF(WT)/NRAS(WT) melanoma metastases prior to treatment with BRAF inhibitor and after resistance had occurred. Taking advantage of PDXs as a limitless source, we screened tumor lysates for resistance mechanisms. We identified a BRAF(V600E) protein harboring a kinase domain duplication (BRAF(V600E/DK)) in ∼10% of the cases, both in PDXs and in an independent patient cohort. While BRAF(V600E/DK) depletion restored sensitivity to BRAF inhibition, a pan-RAF dimerization inhibitor effectively eliminated BRAF(V600E/DK)-expressing cells. These results illustrate the utility of this PDX platform and warrant clinical validation of BRAF dimerization inhibitors for this group of melanoma patients
    corecore