15 research outputs found

    Hot Gas Cleaning, Sulfiding Mechanisms in Absorption of H2S by Solids

    No full text

    Grain growth and Mo homogenization in U-7Mo atomized particles

    No full text
    International audienceTo enhance the behavior of U-Mo based fuel plates under irradiation, it is currently proposed to optimize the microstructure of U-Mo fresh particles. These optimizations are twofold (grain coarsening and intragranular Mo homogenization). In this paper, further insights into the intrinsic kinetics of both mechanisms during thermal annealing are given. U-7Mo grain growth in atomized particles was investigated ex situ using Electron Backscattered Electron Diffraction (EBSD) [1]. Samples were selected from the EMPIrE and the KOMO-5 tests. It was found that EMPIrE annealing conditions (1000C during 1 hour) led to a significant grain growth (up to 33-35 µm) in good agreement with predictive modeling performed by ANL [2]. The initial U-7Mo grain size was 2-3 µm. Mo homogenization was followed in situ using neutron diffraction. Two sets of atomized U-7Mo powder were annealed under different conditions but up to comparable homogenization levels. Mo homogenization kinetics were derived. At the end of these treatments, both homogenized U-7Mo powders were tested at 450C i.e. to emulate fuel plate manufacturing conditions

    Comparative proteomic analysis of plasma membrane proteins between human osteosarcoma and normal osteoblastic cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteosarcoma (OS) is the most common primary malignant tumor of bone in children and adolescents. However, the knowledge in diagnostic modalities has progressed less. To identify new biomarkers for the early diagnosis of OS as well as for potential novel therapeutic candidates, we performed a sub-cellular comparative proteomic research.</p> <p>Methods</p> <p>An osteosarcoma cell line (MG-63) and human osteoblastic cells (hFOB1.19) were used as our comparative model. Plasma membrane (PM) was obtained by aqueous two-phase partition. Proteins were analyzed through iTRAQ-based quantitative differential LC/MS/MS. The location and function of differential proteins were analyzed through GO database. Protein-protein interaction was examined through String software. One of differentially expressed proteins was verified by immunohistochemistry.</p> <p>Results</p> <p>342 non-redundant proteins were identified, 68 of which were differentially expressed with 1.5-fold difference, with 25 up-regulated and 43 down-regulated. Among those differential proteins, 69% ware plasma membrane, which are related to the biological processes of binding, cell structure, signal transduction, cell adhesion, etc., and interaction with each other. One protein--CD151 located in net nodes was verified to be over-expressed in osteosarcoma tissue by immunohistochemistry.</p> <p>Conclusion</p> <p>It is the first time to use plasma membrane proteomics for studying the OS membrane proteins according to our knowledge. We generated preliminary but comprehensive data about membrane protein of osteosarcoma. Among these, CD151 was further validated in patient samples, and this small molecule membrane might be a new target for OS research. The plasma membrane proteins identified in this study may provide new insight into osteosarcoma biology and potential diagnostic and therapeutic biomarkers.</p

    Safety and efficacy of MD1003 (high-dose biotin) in patients with progressive multiple sclerosis (SPI2): a randomised, double-blind, placebo-controlled, phase 3 trial

    No full text
    Background: There is an unmet need to develop therapeutic interventions directed at the neurodegeneration that underlies progression in multiple sclerosis. High-dose, pharmaceutical-grade biotin (MD1003) might enhance neuronal and oligodendrocyte energetics, resulting in improved cell function, repair, or survival. The MS-SPI randomised, double-blind, placebo-controlled study found that MD1003 improved disability outcomes over 12 months in patients with progressive multiple sclerosis. The SPI2 study was designed to assess the safety and efficacy of MD1003 in progressive forms of multiple sclerosis in a larger, more representative patient cohort. / Methods: SPI2 was a randomised, double-blind, parallel-group, placebo-controlled trial done at 90 academic and community multiple sclerosis clinics across 13 countries. Patients were aged 18–65 years, had a diagnosis of primary or secondary progressive multiple sclerosis fulfilling the revised International Panel criteria and Lublin criteria, a Kurtzke pyramidal functional subscore of at least 2 (defined as minimal disability), an expanded disability status scale (EDSS) score of 3·5–6·5, a timed 25-foot walk (TW25) of less than 40 s, evidence of clinical disability progression, and no relapses in the 2 years before enrolment. Concomitant disease-modifying therapies were allowed. Patients were randomly assigned (1:1) by an independent statistician using an interactive web response system, with stratification by study site and disease history, to receive MD1003 (oral biotin 100 mg three times daily) or placebo. Participants, investigators, and assessors were masked to treatment assignment. The primary endpoint was a composite of the proportion of participants with confirmed improvement in EDSS or TW25 at month 12, confirmed at month 15, versus baseline. The primary endpoint was assessed in the intention-to-treat analysis set, after all participants completed the month 15 visit. Safety analyses included all participants who received at least one dose of MD1003. This trial is registered with ClinicalTrials.gov (NCT02936037) and the EudraCT database (2016-000700-29). / Findings: From Feb 22, 2017, to June 8, 2018, 642 participants were randomly assigned MD1003 (n=326) or placebo (n=316). The double-blind, placebo-controlled phase of the study ended when the primary endpoint for the last-entered participant was assessed on Nov 15, 2019. The mean time in the placebo-controlled phase was 20·1 months (SD 5·3; range 15–27). For the primary outcome, 39 (12%) of 326 patients in the MD1003 group compared with 29 (9%) of 316 in the placebo group improved at month 12, with confirmation at month 15 (odds ratio 1·35 [95% CI 0·81–2·26]). Treatment-emergent adverse events occurred in 277 (84%) of 331 participants in the MD1003 group and in 264 (85%) of 311 in the placebo group. 87 (26%) of 331 participants in the MD1003 group and 82 (26%) of 311 participants in the placebo group had at least one serious treatment-emergent adverse event. One (<1%) person died in the MD1003 group and there were no deaths in the placebo group. Despite use of mitigation strategies, MD1003 led to inaccurate laboratory results for tests using biotinylated antibodies. / Interpretation: This study showed that MD1003 did not significantly improve disability or walking speed in patients with progressive multiple sclerosis and thus, in addition to the potential of MD1003 for deleterious health consequences from interference of laboratory tests, MD1003 cannot be recommended for treatment of progressive multiple sclerosis. / Funding: MedDay Pharmaceuticals
    corecore