102 research outputs found

    Quantification of the soluble Receptor of Advanced Glycation End-Products (sRAGE) by LC-MS after enrichment by strong cation exchange (SCX) solid-phase extraction (SPE) at the protein level

    Get PDF
    The study of low abundant proteins contributes to increasing our knowledge about (patho) physiological processes and may lead to the identification and clinical application of disease markers. However, studying these proteins is challenging as high-abundant proteins complicate their analysis. Antibodies are often used to enrich proteins from biological matrices prior to their analysis, though antibody-free approaches have been described for some proteins as well. Here we report an antibody-free workflow on the basis of strong cation exchange (SCX) enrichment and liquid chromatography-mass spectrometry (LC-MS) for quantification of the soluble Receptor of Advanced Glycation End-products (sRAGE), a promising biomarker in chronic obstructive pulmonary disease (COPD). sRAGE was quantified in serum at clinically relevant low to sub ng mL(-1) levels. The method was validated according to U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) guidelines and was compared to an antibody-based LC-MS sRAGE method. The SCX-based method builds upon the bipolar charge distribution of sRAGE, which has a highly basic N-terminal part and an acidic C-terminal part resulting in an overall neutral isoelectric point (pI). The highly basic N-terminal part (pI(calculated) = 10.3) allowed for sRAGE to be enriched by SCX at pH 10, a pH at which most serum proteins do not bind. This study shows that ion exchange-based enrichment is a viable approach for the LC-MS analysis of several low abundant proteins following a thorough analysis of their physical-chemical properties. (C) 2018 The Authors. Published by Elsevier B.V

    Transcriptional responses of PBMC in psychosocially stressed animals indicate an alerting of the immune system in female but not castrated male pigs

    Get PDF
    Background[br/] Brain and immune system are linked in a bi-directional manner. To date, it remained largely unknown why immune components become suppressed, enhanced, or remain unaffected in relation to psychosocial stress. Therefore, we mixed unfamiliar pigs with different levels of aggressiveness. We separated castrated male and female pigs into psychosocially high- and low- stressed animals by skin lesions, plasma cortisol level, and creatine kinase activity obtained from agonistic behaviour associated with regrouping. Peripheral blood mononuclear cells (PBMC) were collected post-mortem and differential gene expression was assessed using the Affymetrix platform (n = 16).[br/] [br/] Results[br/] Relevant stress-dependent alterations were found only between female samples, but not between castrated male samples. Molecular routes related to TREM 1 signalling, dendritic cell maturation, IL-6 signalling, Toll-like receptor signalling, and IL-8 signalling were increased in high stressed females compared to low stressed females. This indicates a launch of immune effector molecules as a direct response. According to the shifts of transcripts encoding cell surface receptors (e.g. CD14, TLR2, TLR4, TREM1) the study highlights processes acting on pattern recognition, inflammation, and cell-cell communication.[br/] [br/] Conclusions[br/] The transcriptional response partly affected the degree of ‘stress responsiveness’, indicating that the high stressed females altered their signal transduction due to potential infections and injuries while fighting

    Hepatic expression patterns in psychosocially high-stressed pigs suggest mechanisms following allostatic principles

    Get PDF
    International audiencePsychosocial challenges are known to introduce cellular and humoral adaptations in various tissues and organs, including parts of the sympatho-adrenal-medullary system and hypothalamic-pituitary-adrenal axis as well as other peripheral tissue being responsive to cortisol and catecholamines. The liver is of particular interest given its vital roles in maintaining homeostasis and health as well as regulating nutrient utilization and overall metabolism. We aimed to evaluate whether and how response to psychosocial stress is reflected by physiological molecular pathways in liver tissue. A pig mixing experiment was conducted to induce psychosocial stress culminating in skin lesions which reflect the involvement in aggressive behavior and fighting. At 27 weeks of age, animals prone to psychosocially low- and high-stress were assigned to mixing groups. Skin lesions were counted before mixing and after slaughter on the carcass. Individual liver samples (n = 12) were taken. The isolated RNA was hybridized on Affymetrix GeneChip porcine Genome Arrays. Relative changes of mRNA abundances were estimated via variance analyses. Molecular routes related to tRNA charging, urea cycle, acute phase response, galactose utilization, and steroid receptor signaling were found to be increased in psychosocially high-stressed animals, whereas catecholamine degradation and cholesterol biosynthesis were found to be decreased. In particular, psychosocially high-stressed animals show decreased expression of catechol-O-methyltransferase (COMT) which has been linked to molecular mechanisms regulating aggressiveness and stress response. The expression patterns of high-stressed animals revealed metabolic alterations of key genes related to energy-mobilizing processes at the expense of energy consuming processes. Thus, the coping following psychosocial challenges involves transcriptional alterations in liver tissue which may be summarized with reference to the concept of allostasis, a strategy which is critical for survival

    Low Caspofungin Exposure in Patients in Intensive Care Units

    Get PDF
    In critically ill patients, drug exposure may be influenced by altered drug distribution and clearance. Earlier studies showed that the variability in caspofungin exposure was high in Intensive Care Unit (ICU) patients. The primary objective of this study was to determine if the standard dose of caspofungin resulted in adequate exposure in critically ill patients. A multicenter prospective study in ICU patients with (suspected) invasive candidiasis was conducted in the Netherlands, from November 2013 to October 2015. Patients received standard caspofungin treatment and the exposure was determined on day 3 of treatment. An area under the concentration-time curve over 24 hours (AUC0-24h) of 98 mg*h/L was considered adequate exposure. In case of low exposure (i.e. <79 mg*h/L; ≥20% lower AUC0-24h), the caspofungin dose was increased and the exposure re-evaluated. Twenty patients were included in the study, of which 5 had a positive blood culture. The median caspofungin AUC0-24h at day 3 was 78 mg*h/L (interquartile range (IQR), 69 - 97 mg*h/L). A low AUC0-24h (<79 mg*h/L) was seen in 10 patients. The AUC0-24h was significantly and positively correlated with the caspofungin dose in mg/kg/day (P = 0.011). The median AUC0-24h with a caspofungin dose of 1 mg/kg was estimated using a pharmacokinetic model and was 114.9 mg*h/L (IQR, 103.2 - 143.5 mg*h/L). In conclusion, the caspofungin exposure in ICU patients in this study was low compared with healthy volunteers and other (non-)critically ill patients, most likely due to a larger volume of distribution. A weight-based dose regimen is probably more suitable for patients with substantially altered drug distribution

    Soluble receptor for advanced glycation end products (sRAGE) as a biomarker of COPD

    Get PDF
    BACKGROUND: Soluble receptor for advanced glycation end products (sRAGE) is a proposed emphysema and airflow obstruction biomarker; however, previous publications have shown inconsistent associations and only one study has investigate the association between sRAGE and emphysema. No cohorts have examined the association between sRAGE and progressive decline of lung function. There have also been no evaluation of assay compatibility, receiver operating characteristics, and little examination of the effect of genetic variability in non-white population. This manuscript addresses these deficiencies and introduces novel data from Pittsburgh COPD SCCOR and as well as novel work on airflow obstruction. A meta-analysis is used to quantify sRAGE associations with clinical phenotypes. METHODS: sRAGE was measured in four independent longitudinal cohorts on different analytic assays: COPDGene (n = 1443); SPIROMICS (n = 1623); ECLIPSE (n = 2349); Pittsburgh COPD SCCOR (n = 399). We constructed adjusted linear mixed models to determine associations of sRAGE with baseline and follow up forced expiratory volume at one second (FEV1) and emphysema by quantitative high-resolution CT lung density at the 15th percentile (adjusted for total lung capacity). RESULTS: Lower plasma or serum sRAGE values were associated with a COPD diagnosis (P < 0.001), reduced FEV1 (P < 0.001), and emphysema severity (P < 0.001). In an inverse-variance weighted meta-analysis, one SD lower log10-transformed sRAGE was associated with 105 ± 22 mL lower FEV1 and 4.14 ± 0.55 g/L lower adjusted lung density. After adjusting for covariates, lower sRAGE at baseline was associated with greater FEV1 decline and emphysema progression only in the ECLIPSE cohort. Non-Hispanic white subjects carrying the rs2070600 minor allele (A) and non-Hispanic African Americans carrying the rs2071288 minor allele (A) had lower sRAGE measurements compare to those with the major allele, but their emphysema-sRAGE regression slopes were similar. CONCLUSIONS: Lower blood sRAGE is associated with more severe airflow obstruction and emphysema, but associations with progression are inconsistent in the cohorts analyzed. In these cohorts, genotype influenced sRAGE measurements and strengthened variance modelling. Thus, genotype should be included in sRAGE evaluations
    corecore