614 research outputs found

    Increased concentrations of both NMDA receptor co-agonists D-serine and glycine in global ischemia:A potential novel treatment target for perinatal asphyxia

    Get PDF
    Worldwide, perinatal asphyxia is an important cause of morbidity and mortality among term-born children. Overactivation of the N-methyl-d-aspartate receptor (NMDAr) plays a central role in the pathogenesis of cerebral hypoxia–ischemia, but the role of both endogenous NMDAr co-agonists d-serine and glycine remains largely elusive. We investigated d-serine and glycine concentration changes in rat glioma cells, subjected to oxygen and glucose deprivation (OGD) and CSF from piglets exposed to hypoxia–ischemia by occlusion of both carotid arteries and hypoxia. We illustrated these findings with analyses of cerebrospinal fluid (CSF) from human newborns affected by perinatal asphyxia. Extracellular concentrations of glycine and d-serine were markedly increased in rat glioma cells exposed to OGD, presumably through increased synthesis from l-serine. Upon reperfusion glycine concentrations normalized and d-serine concentrations were significantly lowered. The in vivo studies corroborated the finding of initially elevated and then normalizing concentrations of glycine and decreased d-serine concentrations upon reperfusion These significant increases of both endogenous NMDAr co-agonists in combination with elevated glutamate concentrations, as induced by global cerebral ischemia, are bound to lead to massive NMDAr activation, excitotoxicity and neuronal damage. Influencing these NMDAr co-agonist concentrations provides an interesting treatment target for this common, devastating and currently poorly treatable condition

    Expanding the clinical spectrum of 3-phosphoglycerate dehydrogenase deficiency

    Get PDF
    3-Phosphoglycerate dehydrogenase (3-PGDH) deficiency is considered to be a rare cause of congenital microcephaly, infantile onset of intractable seizures and severe psychomotor retardation. Here, we report for the first time a very mild form of genetically confirmed 3-PGDH deficiency in two siblings with juvenile onset of absence seizures and mild developmental delay. Amino acid analysis showed serine values in CSF and plasma identical to what is observed in the severe infantile form. Both patients responded favourably to relatively low dosages of serine supplementation with cessation of seizures, normalisation of their EEG abnormalities and improvement of well-being and behaviour. These cases illustrate that 3-PGDH deficiency can present with mild symptoms and should be considered as a treatable disorder in the differential diagnosis of mild developmental delay and seizures. Synopsis: we present a novel mild phenotype in patients with 3-PGDH deficiency

    The gene product Murr1 restricts HIV-1 replication in resting CD4(+) lymphocytes

    Full text link
    Although human immunodeficiency virus-1 (HIV-1) infects quiescent and proliferating CD4(+) lymphocytes, the virus replicates poorly in resting T cells(1-6). Factors that block viral replication in these cells might help to prolong the asymptomatic phase of HIV infection(7); however, the molecular mechanisms that control this process are not fully understood. Here we show that Murr1, a gene product known previously for its involvement in copper regulation(8,9), inhibits HIV-1 growth in unstimulated CD4(+) T cells. This inhibition was mediated in part through its ability to inhibit basal and cytokine-stimulated nuclear factor (NF)-kappaB activity. Knockdown of Murr1 increased NF-kappaB activity and decreased IkappaB-alpha concentrations by facilitating phospho-IkappaB-alpha degradation by the proteasome. Murr1 was detected in CD4(+) T cells, and RNA-mediated interference of Murr1 in primary resting CD4(+) lymphocytes increased HIV-1 replication. Through its effects on the proteasome, Murr1 acts as a genetic restriction factor that inhibits HIV-1 replication in lymphocytes, which could contribute to the regulation of asymptomatic HIV infection and the progression of AIDS.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62709/1/nature02171.pd

    Biosynthesis of a human gall-bladder mucin

    Full text link
    corecore